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a b s t r a c t

We present an effective traversal algorithm and a hardware architecture to accelerate inverse displace-
ment mapping. This includes a set of techniques that are used to reduce the number of iterative steps
that are performed during inverse displacement mapping. For this purpose, we present two algorithms
to reduce the number of descending steps and two algorithms to improve the ascending process.
All these techniques are combined; we observe up to 66% reduction in the number of iterative steps as
compared to other pyramidal displacement-mapping algorithms. We also propose a novel displacement-
mapping hardware architecture based on the novel techniques. The experimental results obtained from
the FPGA and ASIC evaluation demonstrate that our novel architecture offers many benefits in terms of
chip area, power consumption, and off-chip memory accesses for mobile GPUs.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Displacement mapping is a widely used computer graphics
technique that shows the effect of the actual movement of
geometric points according to a given height field. Modern GPUs
offer hardware support for displacement mapping [1–3], and it is
widely used to convey depth and details. However, displacement
mapping is regarded as more expensive than other mapping
techniques, as it involves dealing with a lot of additional geometry
and therefore has a high computational load.

Inverse displacement-mapping [4] algorithms, such as parallax
mapping [5], parallax occlusion mapping [6,7], relief mapping [8,9],
and pyramidal displacement mapping [10–12], have been proposed
to improve the performance of displacement mapping. These
approaches can determine the intersection point between a ray
and a height field by projecting the ray on the height field without
changing the geometry. Moreover, inverse displacement mapping
has been widely used in CPU and GPU implementations [13].

State-of-the-art methods for inverse displacement mapping
can be categorized into two classes [12,13]: approximation
(unsafe) and accurate (safe) algorithms. The approximation algo-
rithms, such as parallax occlusion mapping and relief mapping, are
fast, but are relatively low-accuracy: there is no guarantee that
they will find the correct intersection. A more accurate algorithm
that has been proposed in [10–12,14,15] is the per-pixel ray-tracing

technique with an image pyramid. The pyramidal displacement
map is an image pyramid of the mipmap consisting of many levels
of sub-images. By gradually descending from the root level to the
leaf level of this map, the accurate intersection point between a
ray and a height field can be computed. In [10], visiting a node one
level down or visiting a neighbor node using node crossing occurs
during the traversal of an image pyramid. Meanwhile, Tevs et al.
[12] and Drobot [15] proposed ascending techniques for effective
empty-space skipping, which reduced the number of iteration
steps for traversal at grazing angles compared with [10]. Dick et al.
[16] applied a pyramidal mipmap to GPU ray casting for terrain
rendering.

According to [10,12], pyramidal displacement mapping pro-
vides several advantages over other accurate algorithms, such as
relaxed cone stepping [17] and safety zone techniques [18–20].
First, pyramidal displacement mapping has lower memory
requirements and needs only a simple mipmap construction; the
other methods require a long off-line preprocessing time and have
large memory requirements. Thus, pyramidal displacement map-
ping is more suitable for large-scale or dynamic height fields.
Second, pyramidal displacement mapping provides better image
quality than relaxed cone stepping because relaxed cone stepping
can miss thin geometry [12].

Main results: In this paper, we present a set of improvements to
maximize the traversal performance of pyramidal displacement
mapping. Our approach consists of four sub-algorithms: start-level
decision, multi-level down, selective level-up, and coherent level-up.
The first and second sub-algorithms effectively reduce the required
number of iteration steps at front angles. The start-level decision
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algorithm directly calculates the start traversal level of an image
pyramid using only the ray information, and the multi-level down
algorithm descends multiple levels at one time before the first node
crossing. Both algorithms can be used simultaneously. The third and
fourth sub-algorithms improve the ascending process of [12,15] by
removing unnecessary level switching. The selective level-up algo-
rithm ascends a level only if the predicted intersection point is not
located in the neighbor node in the node crossing. The coherent
level-up algorithm ascends a level when the consecutive node
crossing at the same level occurs. The former is suitable for
dedicated hardware architecture due to low iteration steps and the
latter is suitable for current programmable GPUs due to its simpli-
city. According to our experimental results on a NVIDIA GTX460
GPU, the combination of the presented sub-algorithms increases
frame rates by up to 85% and 56% compared to [10] and [12],
respectively. More importantly, our approach is more robust for both
front and grazing angles than previous algorithms [10,12]. This
feature helps to maintain frame rates in interactive graphics applica-
tions (e.g., games).

We also present a hardware architecture consisting of a height-
map traverse pipeline and a texture-mapping unit. The traverse
pipeline was specially designed to accelerate the presented tra-
versal algorithms. To evaluate the feasibility of our architecture,
we integrated the presented hardware unit into an existing ray-
tracing hardware architecture [21,22]. This approach can also be
combined with current programmable GPUs, which are primarily
designed for rasterization. According to our ASIC evaluation, our
hardware architecture can achieve real-time performance with
fewer hardware resources, memory accesses, and lower power
consumption. Thus, our proposed hardware unit has high potential
utility in desktop/mobile GPUs.

The rest of the paper is organized in the following manner. We
give an overview of pyramidal displacement mapping in Section 2.
In Section 3, we present a set of improved traversal algorithms. In
Section 4, we present the hardware architecture and its imple-
mentation. In Section 5, we provide the experimental results.

2. Pyramidal displacement mapping

A pyramidal displacement map is a quad-tree image pyramid
created through a pre-computing process. An image pyramid is a
hierarchical collection of sub-level images from 20�20 to 2n�2n,
where n is the maximum level. The original displacement map
data might be specified as mipmap level 0, so that each leaf texel
(or node) indicates a displacement value for the actual surface. In
the upper-level image, each inner texel (i, j) is obtained by storing
the maximum value among the four texels ð2i;2jÞ; ð2iþ1;2jÞ;
ð2i;2jþ1Þ, and ð2iþ1;2jþ1Þ in the lower-level image. Thus, the
root texel denotes the globally maximum height value, whereas an
inner texel indicates the locally maximum height value [10,13].

To find the accurate intersection point between a ray and a
height field, the image pyramid is traversed from root level n and
leaf level 0. An example of this process is shown in Fig. 1. First, at
the texture coordinate P of the ray, the height value d1 of the
image pyramid's root level is read. If the current position P of the
ray is advanced to P1 where the ray and d1 meet, the image
pyramid is descended by one level. Then, the height value d2 of the
current mipmap level is read at P1. If d2 is greater than d1; P1 is
advanced to P2 where the ray and d2 meet, and the image pyramid
is descended by one level; otherwise, the position P1 does not
move, but the image pyramid is descended by one level. This
process is repeated until it reaches the leaf level.

While the image pyramid is searched, the ray cannot be
advanced over the boundary of the current node, because we
have no information out of the current node. To address this
problem, we must check whether the advanced position of the ray
lies inside the boundary of the current node. If it crosses, the ray is
moved to the boundary of the crossed node. This process is called
“node crossing” and the neighbor node is visited as a result.

In [12,15], traversal algorithms were proposed to reduce the
number of node crossings in [10] through ascending the mipmap
level. Tevs et al.'s method [12] ascends the mipmap level by one in
cases where the ray resides at a node boundary divisible by two.
This reduces an unnecessary level ascension when traversing to
sibling nodes. In contrast, Drobot's method [15] simply performs
the mipmap level ascension if node crossing occurs. This algorithm
costs very little to implement, but it may cause an unnecessary
level ascension. According to our experiments, [12] is faster than
[15] in general cases. Therefore, we will only consider [12] when
we discuss level-up algorithms.

3. Proposed traversal algorithm

Fig. 2 shows the processing flow of the proposed traversal
algorithm, which consists of three main steps. In the first step, the
algorithm proposed in Section 3.1 determines the start level of the
traversal for the generated ray. This process mainly consists of
end-position calculations and start-level decisions. In the second
step, the traversal to find the intersection point between the ray
and the height field is accomplished from the start level. The
process flow varies by the occurrence of node crossings. If node
crossing occurs, the level-up method proposed in Section 3.3 is
applied; otherwise, the level-down method in Section 3.2 is
applied. Lastly, when the traversal finishes, the target texture
coordinate is calculated using the intersection point between the
view vector and the height map.

3.1. Start-level calculation

The previous traversal algorithms for image pyramids such as
[10,12] initiate the traversal from the root level. The proposed
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Fig. 1. An example of the traversal process of the pyramidal displacement map.
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algorithm in this section determines the start level by calculating
the lowest level at which node crossing does not occur for the
given ray. This means that mipmap levels higher than the start
level do not need to be traversed. This algorithm does not require
reading the height map because only the start and end points of
the ray are used for the calculation.

Fig. 3 illustrates an example case of a ray from a starting point
of P to an ending point of A. P is the input texture coordinate. To
calculate A, we use this equation in ray tracing: rðtÞ ¼ Pþt � D,
where P is the ray's origin, D is the ray's direction vector, and t is
an interval parameter. We call this process the end-position
calculation. Because the interval of t is equal to the range of the
height map value [0,1], the end position A with the maximum t
value is rð1Þ ¼ PþD. In Fig. 3, the coordinates of P and A at level
0 are (4,3) and (6,2), respectively. This means that no node
crossing occurs in mipmaps from level 2 or higher; therefore,
the traversal can start at level 2. In contrast, the previous
algorithms always start traversal at the highest level.

Let us assume that two points are P ¼ ðPx; PyÞ and A¼ ðAx;AyÞ
and the image size of mipmap level 0 is 8�8. After that, Px; Py;Ax,
and Ay become 3 bits each. In this case, the location of Px on the
image of mipmap level k corresponds to the value of the most
significant 3�k bits of Px. For example, in Fig. 3, the location of Px

is 100ð2Þ at level 0 and 1ð2Þ at level 2. The same applies to Ax. Thus,
if the most significant r bits of Px and Ax are equal, it means that Px
and Ax are at the same node until the r level. This characteristic
applies to Py and Ay , which are the y coordinates of the two points.
This can be used to calculate the start level of traversal.

The start-level calculation procedure is described as follows.
Assuming that two points are P ¼ ðPx; PyÞ and A¼ ðAx;AyÞ, a bit-
wise XOR (exclusive-or) operation is performed for Px and Ax and
for Py and Ay. After that, the results of the first and second
operations are compared, and the greater number is taken. With
this result value, we determine howmany bits of leading zeros this
result has. Finally, the start level is calculated by subtracting the
number of leading zeros from the total number of levels.

In Fig. 3, the results of Px bit-wise XOR Ax and Py bit-wise XOR
Ay are 0102 and 0012, respectively. The greater value of these two
is 0102, and this value has 1 leading zero. When the number of
leading zeros (1) is subtracted from the total number of levels (3),
the start level becomes 2.

3.2. Multi-level down algorithm

The multi-level down approach is an improved version of the
previous traversal algorithm that descends sequentially by one
level [10]. In [10], a lower node is visited through the one-level
down process and a neighbor node is visited through node cross-
ing. As described in Section 4.1, the frequency of the level down
process is generally higher than that of node crossing at front and
oblique angles. This implies that using a multi-level down algo-
rithm is likely to reduce the number of iteration steps.

The proposed algorithm simply changes the level-down range,
allowing the algorithm to descend multiple n levels of an image
pyramid at once. The flow of the proposed algorithm is as follows.
First, it determines whether node crossing occurs at the current
level. The multiple-level descent is used only if node crossing does
not occur. In this case, we determine the optimal n value. If there
are no node crossings by this time (the first check) and the current
level is more than one (the second check), we descend two levels;
otherwise, one level. The reason for the first check is that the
proposed algorithm is especially useful until a ray visits the first
leaf node. The second check prevents underflow. The descent
levels are capped at a maximum of two based on the experimental
results in Section 5.2.

Fig. 4 shows an example of the traversal process for the
proposed multi-level down algorithm. In the previous one-level
down algorithm, traversal performs sequentially from level 4 to
level 0. In the proposed algorithm, traversal starts from A, which is
level 4, proceeds to B, which is level 2, and lastly to C, which is
level 0. For the example in Fig. 4, this is a difference of five
iteration steps (prior algorithm) compared to three (proposed
algorithm).
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Fig. 2. Processing flow of the proposed traversal algorithm. Shaded parts indicate
additional parts for our algorithms compared to [10].

Fig. 3. An example of a start-level decision. In this example, the optimal start level is 2.
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3.3. Selective and coherent level-up algorithms

We improve the previous level-up algorithms with two methods.
The first method is the selective level-up algorithm, in which we also
consider the intersection point. This makes it possible to ascend the
level more effectively than [12], because the ascent is made only if
empty-space maximizing can be achieved.

Fig. 5 (left) illustrates an example of the selective level-up
method. If the current location is P, the intersection point P1 is
calculated first, using the ray and the height value 2 in the current
node. Then, the node index difference between the coordinates of

P and P1 is calculated. If this difference is one, we visit the
neighbor node at the same level instead of ascending one level,
since the ray certainly pierces the neighbor node; otherwise,
leveling up is determined by the same rules as [12]. In Fig. 5-
(left), the selective level-up algorithm directly visits the neighbor
node because the node index difference between P and P1 is 1. We
also apply a simple code-level optimization; Tevs's implementa-
tion [12] multiplies 0.5 by the node index and checks the digits
below the decimal point of the calculated value. In contrast, we
only take the and (&) operator to the least significant bit of the
calculated value.

We next present the coherent level-up algorithm (Fig. 5
(right)). In this algorithm, in order to prevent unnecessary linear
searches, this algorithm only ascends levels if consecutive node
crossing occurs at the same level. Because this approach induces
traversal at the same level whenever possible, it has advantages in
terms of SIMD efficiency and memory access. Additionally, this
method has very low overhead because it operates by referring a
boolean value.

The two presented level-up algorithms have several pros and cons.
The selective level-up algorithm can reduce the number
of iteration steps, but it slightly increases the total calculation
cost. Thus, it is suitable for our loop-based hardware pipeline
architecture in Section 4. In contrast, the coherent level-up algorithm
does not have a significant advantage in terms of the number of
iteration steps. However, this method is more GPU-friendly because it
is quite simple and increases coherence. The increased coherence may
also increase cache hit rates and SIMD efficiency.

4. Hardware architecture and implementation

This section describes our hardware architecture and its imple-
mentation, as well as the software implementation on a GPU.

4.1. Hardware architecture

Fig. 6 represents the proposed hardware architecture, which
includes five main units (view calculation, traverse, texture/

3

4 7

1

2

3

6

0

1

2

1

2

3

4

5

6

7

8

6

6 2 3

6 3 2 1 2 3 3

A

B

C

Level

(3)

(4, A)

Height

(2, B)

(1)

(0, C)

Fig. 4. An example of a two-level down traversal process.

height height

Fig. 5. Examples of the selective (left) and coherent (right) level-up algorithms. Dotted arrows indicate [12]. In the left example, the selective level-up algorithm removes
unnecessary level ascending. In the right example, the coherent level-up algorithm reduces the occurrence of level-switching and achieves more coherent traversal.

H.-J. Kwon et al. / Computers & Graphics 38 (2014) 140–149 143



normal address calculation, texture/normal read, and color calcu-
lation), the controller, two FIFOs, and two caches. A TBN (tangent–
bitangent–normal) matrix, a view vector, and texture coordinates
are input data. Each unit is pipelined and the controller manages
loop operations.

The overall processing flow is as follows. The switch unit
transmits the input data to the view-calculation unit when the
controller allows. The view-calculation unit calculates the view
vector on the tangent space by using the TBN matrix and the view
vector on the world coordinate system for each ray; then its result
is stored into FIFO #0. The traverse unit finds the intersection
point between the view vector and the height map, then stores the
result into FIFO #1. The texture/normal address-calculation unit
calculates the addresses for both the texture and normal maps.
The texture/normal read unit reads the texture and normal data
using the calculated texture and normal addresses, respectively.
Finally, the color-calculation unit calculates the color value using
the texture and normal data.

The traverse unit is fully pipelined for high performance, and
the other units are designed as semi-pipelined structures to share
the hardware resources efficiently. Because this organization may
lead to a load-balancing problem between the traverse unit and
the other main units, we insert two input/output FIFO buffers to
resolve the problem.

The main role of the controller is to prevent overflow of FIFO
#0. If FIFO #0 is full, the controller commands the switch unit to
not receive the data. As a result, the view-calculation unit is stalled
to prevent the new data from being inputted into FIFO #0. If the
color-calculation unit outputs a color value for a pixel, then the

controller allows the switch unit to transmit new data, because
there is an empty entry in two FIFOs.

Because the traverse unit is fully pipelined, it accesses height
data quite frequently. Thus, the traverse unit has an exclusive
height cache. On the other hand, the unified texture/normal cache
deals with texture and normal data access. Because the texture
read stage has a semi-pipeline structure, one unified cache is more
efficient than two separate caches.

The traverse unit processes iteratively, so its pipeline is in the
form of a cascade; that is, the uppermost pipeline stage is
processed after finishing the lowest pipeline stage. The height
cache reduces the miss penalty dramatically by non-blocking
processing; if the current cache requests reveal a miss, miss
handling is performed and the subsequent pipeline stages are
progressed simultaneously without stall. The process of the
request that induces a cache miss is delayed to the next iteration.

4.2. Traverse pipeline

As shown in Fig. 7, the traverse unit consists of 15 pipeline
stages. The processing flow behavior of Fig. 7 is fundamentally
identical to that of Fig. 2. On the right side of Fig. 7, two-cycle
latency is required for floating-point addition (Fadd) and floating-
point division (Fdiv); in contrast, one-cycle latency is required for
floating-point multiplication (Fmul) and floating-point compari-
son (Fcomp). We provide the numbers of floating-point arithmetic
units, and integer arithmetic and cache access are performed
during empty sections in the pipeline stages.

The processing flow of Fig. 7 is as follows. The pipeline has two
modes. We first perform “Start-Level Calculation” with the first
mode. Here, the end point A for input P is calculated at the hit-
point calculation unit. In this mode, only the “Hit-Position Calcula-
tion” and “Start-Level Decision” parts on the left side are used.
After that, the second mode is enabled for the iterative search. This
mode uses all functions in Fig. 7 except for “Start-Level Decision”.
We first calculate the height address (HA) in which the height
value of the current level is stored, and then read the data from the
height cache. HA calculation requires two values from pipeline
P15: the hit point of the current level and the current level value.
After that, the hit point of the current level and the node-crossing
position are calculated simultaneously. We then perform three
tests (node crossing, multi-level down, and level-up) simulta-
neously in the NC/MLD/LU test unit.

Fig. 6. Our proposed hardware architecture.
Fig. 7. The pipeline stages of the traverse unit. Left: the location of the functions.
Right: the layout of the floating-point arithmetic units to handle these functions.
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If node crossing occurs, the node crossing position is trans-
ferred to the level-decision unit; otherwise, the hit point of
the current level is transferred to the address-conversion unit.
In the level-decision unit, the next level is determined according
to the results of the three tests, and then transferred to the
address-conversion unit. The address-conversion unit converts
the inputted floating-point texture coordinate into an integer
texture address and simultaneously checks whether the decided
next level reaches the termination condition. If true, the current
texture coordinate is outputted as the final result of the hit point;
otherwise, the converted texture address and the decided level are
forwarded into pipeline P1.

4.3. Hardware implementation

For hardware implementation, we used the Dynalith Systems
iNEXT-V6 board, which contains four Xilinx Virtex-6 LX550 FPGA
chips, 2 GB of DDR2 memory, and 8 MB of SRAM. A TFT LCD board
with 800�480 screen resolution is attached to the iNEXT-V6 board.

We integrated our displacement hardware unit into the exist-
ing ray-tracing hardware architecture, RayCore [22], which is the
upgraded version of WRTX [21]. Our architecture is implemented
on each FPGA chip and operates at a speed of 84 MHz. In each chip,
the 64-bit bus at 84 MHz is used to access external memory.
Table 1 shows the list of hardware resources for each unit. We use
a 24-bit floating-point format (1 sign bit, 7 exponent bits, and 16
fraction bits). Our design occupies approximately 67% of the
FPGA's logic cells and 25% of the FPGA's memory resources.

4.4. GPU implementation

To evaluate the GPU performance of the presented algorithm,
we used DirectX 11 and Shader Model 5.0. The benchmark
environment is the AMD DetailTessellation11 sample in the
DirectX SDK. We added the quad-tree displacement-mapping
shader code in [15] and the maximum mipmap generation into
the benchmark source code. We disabled the level-up code in [15]
making this implementation fundamentally identical with [10]. To
implement Tevs et al.'s level-up method [12] in our experimental
environment, we referred to their GLSL code. The implementation
of our algorithms was described in Section 3.

5. Experimental results

In Sections 5.1–5.3, we describe platform-independent results.
After that, we describe and analyze the results of the proposed
algorithm on a GPU and that of the proposed hardware architec-
ture on an FPGA and an ASIC. Finally, we describe the suitability of
our hardware architecture for mobile GPUs. We used a screen
resolution of 1024�768 for Sections 5.1–5.4, and 800�480 for
Section 5.5. We used seven scenes in the DetailTessellation11
sample (Fig. 8). The Stones and Rocks scenes, respectively, have
the highest and the lowest coherence between adjacent height

maps among the scenes. The resolution of all height maps is
256�256. We also used three angles in Fig. 9 to measure
performance variation by different angles.

5.1. Probability of node crossing

Table 2 shows the probability of node crossing during the
traversal of the image pyramid for [10,12]. The experiment found
that the average probability of node crossing at front angles was
only 3–22% for both the algorithms. This result means a high
probability of leveling down during traversal at the front angles, so
the start-level decision and multi-level down algorithms make
good use of this tendency. Furthermore, the level-up method [12]
reduces the frequency of node crossing, so it can increase perfor-
mance at grazing angles.

5.2. The number of iteration steps of the multi-level down algorithm

Table 3 shows the number of iteration steps with different
level-down values (n). Neither the start-level decision nor selec-
tive/coherent level-up algorithms were applied. Note that the n
value of one is identical to [10]. The n value of two reduces the
number of iteration steps at all angles more than the n value of
one, so we select the n value of two in further experiments.

5.3. Comparison of the number of iteration steps

In Table 4, we compare the number of iteration steps between
previous algorithms [10,12] and our algorithms. In front angles,
the start-level decision and multi-level down algorithms consider-
ably reduce the number of iteration steps. In grazing angles, the
selective level-up algorithm more effectively reduces the number
of steps than [12], and the number of steps of the coherent level-
up algorithm is as seen in the results of [12]. When we use the
start-level decision, multi-level down, and the selective level-up
algorithms together, the number of iteration steps is reduced by
16–65% and 5–66% compared to [10] and [12], respectively. In our
loop-based H/W architecture, the number of iteration steps
directly affects the overall performance.

5.4. Performance evaluation on a GPU

To evaluate the GPU rendering performance of the presented
algorithms, we used the following hardware: a 3.3 GHz Intel Core
i5-2500 quad-core CPU, 8 GB of DDR SDRAM, and an nVIDIA
Geforce GTX460 GPU.

Table 5 describes the results on the GPU. As seen in the results
from the number of iteration steps in Section 5.3, the start-level
calculation and multi-level down algorithms achieve performance
improvements at front angles. However, at grazing angles, the
coherent level-up algorithm is more beneficial than the selective
level-up algorithm and Tevs et al.'s algorithm [12]. The reason that
the coherent level-up algorithm is more GPU-friendly than other
algorithms is its simplicity and coherence.

When we use the start-level decision, multi-level down, and
coherent level-up algorithms together, we achieve performance
improvements over [10,12] by up to 85.4% (Four Shapes at the
grazing angle) and 56.4% (Stones at the front angle), respectively.
The average performance improvements over [10] and [12] are
21.8% and 15.8%, respectively. Fig. 10 shows the relative perfor-
mance of [12] and the mixed use of our approaches compared to
[10]. Tevs et al.'s work [12] shows much better performance at the
grazing angle than [10], but it decreases performance at the front
angle by approximately 30% due to its overheads and unnecessary
level ascending. In contrast, our approach increases performance
in the majority of cases. This result means that our approach,

Table 1
Hardware complexity: the number of floating-point arithmetic elements per
FPGA chip.

2input
adder

3input
adder

Comparator Multiplier Divider Square
root

View calc. – 1 – 3 1 –

Traverse 6 – 7 5 2 –

Addr. calc. 1 – – 1 – –

Color calc. 1 1 – 3 1 1

Total 8 2 7 12 4 1
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unlike previous algorithms, is robust for angle changes; this
feature is important in interactive 3D graphics.

We also performed an additional experiment in the Four
Shapes scene by uniformly distributing a set of view samples at
the hemisphere. In this experiment, we increased camera angles
10 degrees at a time, from 0 to 180 degrees. As in the previous
results, the result in Fig. 11 confirms again that our approach is
more robust for various camera angles than previous algorithms.

According to Table 5, the mixed use of the presented algo-
rithms does not always achieve peak performance. The reason is
that the start-level calculation and multi-level down algorithms
and the coherent level-up algorithm have different characteris-
tics from one another. The calculation cost of the former algo-
rithms would be useless at grazing angles, and the coherent
level-up algorithm would negatively affect the performance at
front angles. However, these negative effects only cause a small
amount of performance degradation. Therefore, the mixed use of
the presented algorithms is advantageous in terms of average
performance.

5.5. Performance evaluation of our H/W architecture

This section describes the performance evaluation results of
our dedicated hardware architecture. We used the BART
Kitchen scene with 110 K triangles [23] (Fig. 12) to show how
our displacement-mapping units are integrated as part of the
RayCore system. We combined four displacement maps (Rocks,
Stones, Four Shapes, and Saints) into a single 512�512 texture
and mapped it to the floor of the kitchen. We used two
different settings of the maximum ray recursion depth: 0 (ray
casting) and 10 (Whitted ray tracing with reflection and
refraction). Note that the last setting requires the tracing of
approximately three times more rays for reflection and refrac-
tion. We also measured the performance of the four scenes
with each displacement map. In this experiment, we only used
an oblique angle.

Table 6 summarizes the results on the FPGA board. This
table includes cache hit rates, memory traffic, shading unit
utilization, FPS, and performance (Mpixels/s). The
displacement-mapping performance on FPGA is 4.8–9.8 Mpix-
els/s at 84 MHz. Because the Kitchen scene is more complex
than the other four scenes, the Kitchen scene shows lower
throughput than the others. The memory traffic in the worst
case (Kitchen with the ray depth 10) is quite low: 115 MB/s for
4.8 M pixels.

For the ASIC evaluation, we used TSMC's 28-nm high-
performance, low-power process and the Synopsis design
compiler. The presented displacement-mapping unit was
synthesized up to 650 MHz with a voltage of 1.0 V, so we set
the target frequency to 500 MHz with some margin. The die
size of four displacement-mapping units is approximately
0.8 mm2. The internal power consumption of the
displacement-mapping unit, derived from the Synopsis design
compiler, is 0.3 W including that of caches and the AXI bus
interface.

Table 7 summarizes our GPU, FPGA, ASIC experimental
results in the Rocks scene. As with [24], the ASIC performance
is linearly scaled up proportional to the clock frequency because
the memory traffic is not a bottleneck; in all experiments, the
required memory bandwidth is less than 0.7 GB/s at 500 MHz,
which is much lower than the peak memory transfer rates of the
current desktop GDDR5 memory (up to 288.4 GB/s) and the
current mobile LPDDR3 memory (14.9 GB/s). Consequently, the
ASIC version of our architecture can provide sufficient perfor-
mance for real-time rendering (50 FPS at HD 720p) with only
four small units.

Fig. 8. Benchmark scenes: Rocks, Stones, Four Shapes, Saints, Wall, Bump, and Dent.

Fig. 9. Rendered images of three angles: a front angle (left), an oblique angle (middle), and a grazing angle (right).

Table 2
Probability of node crossing (%).

Front Oblique Grazing

[10] [12] [10] [12] [10] [12]

Rocks 22.4 19.2 54.5 36.9 76.4 47.9
Stones 3.8 3.7 17.9 15.0 51.5 36.1
Four shapes 8.5 8.1 39.7 28.3 58.1 37.9
Saints 5.9 5.5 27.5 21.6 62.1 39.8
Wall 5.1 4.9 21.0 16.6 52.1 35.9
Bump 7.6 7.3 38.2 27.5 72.5 47.3
Dent 5.1 4.9 23.5 18.3 38.5 26.9

Table 3
Comparison of the number of iteration steps for different level-down values (n) in
the Rocks scene.

n Front Oblique Grazing

1 11.5 19.7 37.9
2 8.9 18.2 37.8
3 8.4 18.2 38
4 9.6 19.1 42.7
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5.6. Suitability for mobile GPUs

Mobile devices have different characteristics than do laptop or
desktop GPUs. Thus, the most important design criteria for mobile
graphics hardware are performance per watt (power efficiency)
and performance per square millimeter (area efficiency) [25]. In
addition, reducing off-chip memory accesses is important for
power efficiency and high performance [25].

According to the results on the ASIC evaluation, our hardware
architecture satisfies these criteria: small chip area (0.8 mm2), low
power consumption (0.3 W), and low off-chip memory accesses
(0.03 GB/s for simple scenes and 0.3–0.7 GB/s for complex scenes).
Therefore, the proposed hardware unit has high potential utility as
an additional fixed unit on existing mobile GPUs.

6. Conclusion and Future Work

In this paper, we proposed a set of improvements for pyramidal
displacement mapping. As a result, the number of iteration steps
decreased by up to 66% compared to the previous algorithms. We
also proposed a hardware architecture using the algorithm and
integrated it into the existing ray-tracing hardware [22]. With the
FPGA and ASIC evaluations, we showed promising results of real-
time inverse displacement mapping.

The main advantage of our approach is its wide applicability.
Our algorithm can be easily added into the existing pyramidal
displacement mapping. Thus, it is useful for existing real-time 3D
graphics applications using GPUs. Our architecture is especially
valuable for mobile 3D graphics. Even though high-quality 3D
graphics on mobile devices are increasingly important, current
mobile GPUs provide neither sufficient shader performance for
real-time inverse displacement mapping nor DirectX11 tessella-
tion [3]. Thus, many mobile 3D graphics applications limit the
triangle count and sacrifice the details. Our architecture can
resolve this problem with real-time inverse displacement
mapping.

In future studies, we would like to extend our approach to ray
casting for terrain rendering [16] and to combine our approach
with other concepts in [12,15,26,27] such as level-of-detail, height
blending, and silhouette processing. Finally, an ASIC chip of the
entire ray-tracing system with the displacement-mapping unit
and its full paper will be announced in the near future.
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Table 5
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Fig. 10. Performance improvements of [12] and our approach over [10]. The result
is obtained from Table 5.

Table 4
Comparison of the number of iteration steps per pixel. Bold values indicate the lowest step (best case). Abbreviations: F – front angles, O – oblique angles, and G – grazing
angles.

Rocks Stones Four shapes Saints Wall Bump Dent

F O G F O G F O G F O G F O G F O G F O G

[10] 11.6 19.7 37.9 9.3 10.9 18.4 9.8 14.9 21.3 9.5 12.4 23.6 9.4 11.3 18.7 8.6 12.9 28.9 8.4 10.4 12.7
[12] 12.6 19.6 30.2 9.5 11.5 19.2 10.2 15.6 20.0 9.8 13.2 20.7 9.7 11.8 19.2 8.9 13.4 25.3 8.6 19.8 12.7

(a) Start-level calculation 9.5 19.3 37.9 4.4 8.4 18.0 7.4 14.3 21.3 6.6 11.4 23.3 5.2 9.4 18.3 8.5 12.9 28.9 8.3 10.4 12.7
(b) Multi-level down 8.9 18.2 37.8 5.6 7.8 16.4 6.9 13.8 21.6 6.1 10.1 23.2 4.1 8.0 23.0 6.2 12.9 36.6 5.5 8.0 11.0
(c1) Selective level-up 11.6 18.4 29.2 9.3 11.0 18.2 9.8 14.4 19.7 9.5 12.3 20.0 9.4 11.3 18.5 8.6 12.3 24.7 8.4 10.3 12.4
(c2) Coherent level-up 12.1 19.8 31.6 9.3 11.3 19.3 10.0 15.4 20.6 9.6 12.9 21.4 9.5 11.7 19.3 8.7 13.2 26.1 8.4 10.7 13.0

Mixed use of (aþbþc1) 8.0 16.5 28.3 3.2 6.6 15.8 5.6 12.6 17.9 4.7 9.5 18.8 3.9 6.6 15.1 6.1 11.4 24.1 5.5 7.8 10.3
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