
Computers & Graphics 61 (2016) 40–49
Contents lists available at ScienceDirect
Computers & Graphics
http://d
0097-84

n Corr
journal homepage: www.elsevier.com/locate/cag
Technical Section
L-Bench: An Android benchmark set for low-power mobile GPUs

Jae-Ho Nah a, Youngsun Suh b, Yeongkyu Lim a,n

a LG Electronics, 56, Digital-ro 10-gil Geumcheon-gu Seoul, South Korea
b LG Electronics, 19 ,Yangjae-daero 11-gil Seocho-gu Seoul, South Korea
a r t i c l e i n f o

Article history:
Received 14 April 2016
Received in revised form
9 September 2016
Accepted 12 September 2016
Available online 28 September 2016

Keywords:
GPU benchmark
OpenGL ES
x.doi.org/10.1016/j.cag.2016.09.002
93/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
a b s t r a c t

In recent years GPUs have become one of the most important components in mobile application pro-
cessors (APs). Thus, performance measurement and analysis of mobile GPUs are crucial to mobile AP
manufacturers, device manufacturers, graphics application programmers, and end users. However, it is
hard to analyze mobile GPUs in depth via existing high-level (with frames per second) or low-level
benchmarks (with a fill rate, ALU performance, etc.). To bridge the gap between the benchmarks, we
present a novel Android benchmark set for low-power GPUs, called L-Bench. This benchmark set consists
of mid-level micro-benchmarks implemented on OpenGL ES 3.1, which are carefully chosen for different
workloads. By analyzing the results, this benchmark suite provides not only frames per second of each
benchmark but also performance of each GPU subsystem (geometry units, ALUs, texture mapping units,
raster operations pipelines, caches/memory units, and tessellators) and overall GPU performance. For
experiments, we perform our benchmark suite on five representative mobile devices that have different
mobile GPUs, after that, we describe comprehensive analysis of each GPU architecture.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

With increasing demands on high-quality graphics on mobile
devices, GPUs are now indispensable units for mobile devices,
such as smartphones and tablets. In particular, mobile devices
with a high-resolution screen require more powerful GPUs. As a
result, GPUs usually occupy a large die area of application pro-
cessors (APs), and GPU performance is becoming one of the
important measures for selecting mobile devices.

However, GPU performance analysis is not an easy task because a
GPU consists of very complex components, such as geometry units,
ALUs, texture mapping units, raster operations pipelines (ROPs),
caches/memory units, and tessellators. Of course, GPU vendors
provide peak performance of each unit (e.g, the triangle rate, the
FLOPs, the texel rate, the fill rate, the peak memory bandwidth, etc.).
However, these peak performance values may not be comparable
between different GPU architectures because actual performance
can be varied by various factors such as hardware organization,
architectural features, scheduling policies, driver support, and so on.
This is why proper GPU benchmarks are needed.

In contrast to desktop environments, very high-end graphics
applications, which can stress out GPUs, are limited in mobile
environments for the following reasons. First, mobile applications
should exploit limited hardware resources in mobile devices, so
programmers usually avoid implementing complex graphics effects
to get sufficient frame rates. Second, the OpenGL ES API only
recently supports advanced features in OpenGL, so it has been hard
to directly port desktop/console programs to mobile applications. As
a result, only a few mobile GPU benchmarks have been usually used
to measure GPU performance of state-of-the-art mobile devices,
instead of real-world applications.

There are two types of mobile GPU benchmarks: high-level
benchmarks and low-level benchmarks. High-level benchmarks,
such as GFXBench 4.0 [1], Basemark ES 3.1 [2], and 3DMark Sling
Shot Benchmark [3], usually render game-like scenes and measure
their frame rates (or calculate their scores) on a device. This type
of benchmarks can be useful to know overall GPU performance. In
contrast, low-level benchmarks aim at measuring specific features
or performance of each component in a GPU. Low-level tests in
GFXBench measure performance of tessellation, ALU, driver over-
head, and texturing. DrawElements Quality Program (dEQP) ana-
lyzes feature conformance and performance through several
thousand function-level tests, and dEQP is now included in Google
Android Compatibility Test Suite (CTS).

A limitation of the existing benchmarks is the difficulty in ana-
lyzing the results in depth. For example, if same-grade GPUs show
different frame rates in high-level benchmarks, it is hard to know
the reason from the results themselves. Analysis of both the high-
and low-level benchmark results may not be very useful because
there is no direct relationship between them if the benchmarked

www.sciencedirect.com/science/journal/00978493
www.elsevier.com/locate/cag
http://dx.doi.org/10.1016/j.cag.2016.09.002
http://dx.doi.org/10.1016/j.cag.2016.09.002
http://dx.doi.org/10.1016/j.cag.2016.09.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.09.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.09.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2016.09.002&domain=pdf
http://dx.doi.org/10.1016/j.cag.2016.09.002


J.-H. Nah et al. / Computers & Graphics 61 (2016) 40–49 41
GPUs have different hardware architectures. Another concern is
a correlation with real-world scenarios; because the high-level
benchmarks usually render only one or two scenes, some driver
optimizations for specific benchmarks by GPU vendors can achieve
huge speed ups in the benchmarks and these results may be dif-
ferent from the actual performance in real-world scenarios.

To overcome the above limitations, we present a novel
benchmark set for low-power embedded GPUs, called L-Bench. In
contrast to the existing high- or low-level benchmarks, we get
benchmark results from a set of mid-level micro-benchmarks,
similar to SPECviewperf [4]. Our micro-benchmarks visualize one
or two well-known effects and have very different workloads, so
we can extract performance of each GPU component from results
of the micro-benchmarks. We also calculate overall GPU perfor-
mance from the results. For experiments, we executed our
benchmark app on five mobile devices that have different GPUs.
The results of our experiments show that the calculated overall
performance in L-Bench shows similar results to the existing high-
level benchmarks even though the benchmarked GPUs show very
different frame rates in each micro-benchmark.

Compared to prior benchmarks, L-Bench offers the following
advantages.

� In-depth results: L-Bench provides not only frames per second
(FPS) but also performance of both each subsystem in a GPU and
each graphics effect. It can be a hint to analyze pros and cons of
each GPU architecture.

� Extensibility: L-Bench can be easily extended to test new
features included in recent APIs by adding additional micro-
benchmarks. In fact, we have included an Android Extension
Pack (AEP) benchmark in L-Bench by simply porting an existing
OpenGL tessellation source code to OpenGL ES. Additionally,
more micro-benchmarks will provide more accurate, abundant
results.

� Neutrality: L-Bench consists of several micro-benchmarks with
different scenes and does not use any vendor-specific optimiza-
tions. Therefore, the overall results from L-Bench can be less
influenced by specific scene features, H/W features, or driver
optimizations.

The rest of this paper is organized as follows. In Section 2, we
briefly summarize prior mobile GPU benchmark methodologies. In
Section 3, we introduce our design criteria and the benchmark
implementation process. In Section 4, we describe the techniques,
workloads, and implementation details of the micro-benchmarks.
In Section 5, we show the results on five mobile devices and
analyze each GPU architecture in the devices. Finally, we describe
conclusions, limitations, and future work in Section 6.
2. Related work

There are a few papers about 3D graphics benchmark meth-
odologies on mobile devices. GraalBench [5] is a 3D graphics
benchmark suite for mobile devices. This benchmark suite consists
of two games and four Viewperf/VRML scenes. By collecting trace
data from the scenes, the benchmark suite provides detailed
workload characterization of each scene. This tool is good for
understanding the benchmark scenes but does not aim at perfor-
mance evaluation of actual mobile devices.

TEAPOT [6] is a mobile GPU simulator to evaluate GPU archi-
tectures. This simulation infrastructure utilizes GPU traces from
mobile applications similar to GraalBench and estimates perfor-
mance and energy consumption of GPU architectures from the
results.
In contrast to GraalBench and TEAPOT, Ma et al. [7] measured
the actual performance of two game benchmarks on three
smartphone models. To analyze computation time and power
consumption of each graphics pipeline stage, their approach dis-
ables some or all graphics pipeline stages.

Meanwhile, Johnsson et al. [8,9] mainly focused on power
efficiency. Johnsson et al. [8] built a power measuring device, and
using the device, they measured power and performance of six
rendering/shadow algorithms on four discrete/integrated/mobile
GPUs. Energy per pixel of each case was reported as the results.
Johnsson et al. [9] presented a simpler, non-invasive measurement
method. Because the beginnings of the frames can be detected in a
semi-automatic way, the method can be used when the source
code is not available.

Finally, we briefly compare our approach with SPECviewperf
[4]. Both approaches include a set of mid-sized micro-benchmarks
to measure graphics performance. SPECviewperf aims at measur-
ing professional graphics performance on workstations, and the
micro-benchmarks of SPECviewperf are from actual applications.
In contrast, our approach aims at measuring mobile graphics
performance based on OpenGL ES, and each micro-benchmark
represents one or two effects and different workloads. Addition-
ally, we extract the performance of each GPU subsystem from the
results for understanding of GPUs. A more detailed description of
our design criteria will be shown in the next section.
3. Design criteria and implementation process

Before we describe details of the micro-benchmarks, we
introduce our design criteria and benchmark implementation
process in this section. Since we started this benchmark project,
we have made the following criteria for further implementation.

� The benchmark is implemented using OpenGL ES 3.1 which is
the dominant API for modern mobile devices. Additionally, our
benchmark suite is based on the Android platform. This is
because Android is the most widely used mobile operating
system now and we can compare various GPUs designed by
different vendors on the Android platform. Additionally, we
include a micro-benchmark to test AEP because the recent
OpenGL ES 3.2 spec includes all features of AEP and all major
mobile GPU IP vendors have announced AEP support at least in
the near future.

� Proper micro-benchmark selection is very important to result in
accurate GPU evaluation, so we first establish micro-benchmark
selection criteria before actual benchmark implementation.
According to the criteria, the benchmark suite should deal with
(a) well-known traditional techniques widely used in both
mobile and desktop platforms (e.g., shadow mapping, cube
mapping, transparency, and skinning), (b) techniques that are
common on desktops but forthcoming on mobile devices (e.g.,
deferred shading, screen-space ambient occlusion, occlusion
culling, and tessellation), and (c) main new features introduced
in OpenGL ES 3.1/AEP (e.g., multiple render targets, geometry
instancing, occlusion queries, 3D textures, and compute/tessel-
lation shaders).

� Micro-benchmarks should have different workloads as far as
possible to analyze each GPU subsystem in a GPU (geometry
units, texture mapping units, ALUs, ROPs, caches/memory units,
and tessellators).

� To derive fair results from the benchmarks, we exclude the use
of vendor-specific extensions even if that can achieve huge
performance improvements.



Table 1
Alignment of each profiler's counters to our workload characterization.

Subsystems Counters

J.-H. Nah et al. / Computers & Graphics 61 (2016) 40–4942
� All textures are compressed by ETC2/EAC [10] to reduce mem-
ory traffic. ETC2 is the standard texture compression format in
OpenGL ES 3.0.

� Because some mobile GPU architectures have different processing
capacity between 16-bit and 32-bit ALUs, a proper floating-point/
integer/texture precision selection in a shader program can
reduce computational loads. To utilize this feature, we basically
use the highp and mediump precision for vertex and pixel
processing, respectively. After that, we additionally tune the
precision of each variable according to its type; for example,
normals are processed with the mediump precision, world-
coordinate positions are processed with the highp precision,
and mode flags are stored with the lowp precision. However,
lower precision may cause render artifacts on some devices.
Therefore, whenever we change the precision of each variable
to mediump or lowp, we verify whether the lower precision does
not make any visible artifacts on all test devices. If the precision
change does not pass this test, we roll back the precision.

� To get on-screen results from various screen resolutions (720p,
1080p, and 1440p), we render an image to an off-screen render
target and blit the image to the full screen. This is possible using
the glBlitFramebuffer() function introduced in OpenGL ES 3.0.
By doing the blit operation, we can get full-screen images even
if the selected screen resolution in the benchmarks does not
match the device's screen resolution.

Fig. 1 illustrates our benchmark implementation process. First,
we implement micro-benchmark code on a laptop with Windows
7 using the OpenGL ES emulator in PowerVR SDK. Second, we port
the source code to the Android environment though Android NDK.
Third, we execute the benchmark app on several mobile devices
and test whether the application runs properly on the devices. If
the test does not make any problem, we then get the frame rates of
each micro-benchmark from the devices. Fourth, we measure the
workload of each micro-benchmark using four GPU profilers and
four different GPUs: ARM DS-5 Streamline 5.22 with Mali
T628MP4, nVIDIA Tegra Graphics Debugger 2.0 with mobile Kepler
K20A, Qualcomm Snapdragon Profiler 1.5 with Adreno 418, and
Code implementation 
using an OpenGL ES 

Emulator

Porting the code using
the Android NDK

App execution on
mobile devices

Adding the score 
calculation code to 

the app

Final app

Laptop

Mobile

Profiling
(DS-5 Streamline, 
Tegra Graphics 
Debugger, and

Snapdragon Profiler)

Profiling
(GPUPerfStudio)

Fig. 1. The overall benchmark implementation process.
AMD GPUPerfStudio 3.2.18 with Radeon HD 7650M. Finally, we
insert the score calculation code to the benchmark code by using
the maximum FPS values and the calculated workloads of each
micro-benchmark. The values are used to calculate relative per-
formance of the fastest device (Fig. 2).

Our profiler choice criteria are described as follows. Among each
mobile GPU vendor's profiler, we select profilers which can provide
utilization of at least three of the six GPU subsystems. As a result,
three mobile GPU profilers (DS-5 Streamline, Tegra Graphics
Debugger, and Snapdragon Profiler) are used for our workload
characterization. We additionally use AMD GPUPerfStudio with an
OpenGL ES Emulator for more plentiful analysis because GPUPerf-
Studio provides all counter values required for our benchmark suite.

The detailed profiling and score calculation metrics are
described as follows. First, the percentage of workloads is calcu-
lated from the profilers. Because the performance counters in each
profiler are different, we align each profiler's counters to the uti-
lizations of GPU subsystems. The detailed alignment is described
in Table 1. If some utilization cannot be directly derived from
counters in some profiler, we try to combine multiple values to get
the value and carefully compare the calculated value to the related
value from the other profilers. The sum of workload percentages of
each GPU subsystem is normalized to 100% in order to give the
same weight to each micro-benchmark. Having obtained the FPS
of each micro-benchmark from the experiment on multiple devi-
ces, we calculate the benchmark scores according to the
following equations:

score dev; subsysð Þ ¼ 100
24

X3

res ¼ 1

X8

bench ¼ 1

FPS dev; bench; resð Þ
FPSMAX bench; resð Þ workload subsys; resð Þ

ð1Þ
ARM DS-5 Streamline
Geometry JS0_ACTIVE/GPU_ACTIVE
ALU ARITH_WORDS/GPU_ACTIVE
Texture TEX_ISSUES/GPU_ACTIVE
ROP (FRAG_QUADS_EZS_TESTn4 þ

FRAG_THREADS_LZS_TEST þ
FRAG_CYCLES_NO_TILE)/GPU_ACTIVE

Memory Max(L2_EXT_READ_BEATSþL2_EXT_R_BUF_FULLþ
L2_EXT_RD_BUF_FULLþL2_EXT_AR_STALL,
L2_EXT_WRITE_BEATS þL2_EXT_W_BUF_FULLþ
L2_EXT_W_STALL)/GPU_ACTIVE

nVIDIA Tegra Graphics Debugger
Geometry Max(IA SOL, IA Bottleneck)
Texture Max(TEX SOL. TEX Bottleneck)
ROP Max(Rasterization SOL, Rasterization Bottleneck,

ZCull SOL, ZCull Bottleneck,
ROP SOL, ROP Bottleneck)

Memory L2 Bottleneck
Tessellator Tessellator Bottleneck

Qualcomm Snapdragon Profiler
Geometry % Vertex Fetch Stall
ALU % Time ALUs Working
Memory % Stalled on System Memory

AMD GPUPerfStudio
Geometry PrimitiveAssemblyBusy
ALU Sum((VS/DS/HS/GS/PS)ALUBusy)
Texture Sum((VS/DS/HS/GS/PS)TexBusy)
ROP DepthStencilTestBusy
Memory TexUnitBusy-Sum((VS/DS/HS/GS/PS)TexBusy)
Tessellator TessellatorBusy



Table 2
Performance-independent statistics of our benchmark set. The values in this table
were obtained from nVIDIA Tegra Graphics Debugger.

Micro-benchmark Input primitives/frame Setup primitives/frame

720p 1080p 1440p

Instancing 84,638 606,722 1,011,829 1,311,817
SSAO 100,016 36,013 40,809 43,206
Tiled shading 279,167 38,247 40,688 42,013
CHCþþ 570,967 64,977 86,432 105,177
Shadow 417,925 85,407 86,954 87,976
OIT 2,614,244 588,189 828,792 987,153
Cube mapping 336,010 114,914 126,425 132,422
BVH 240,082 92,382 111,754 120,118
Tessellation 1 141,497 145,873 147,577

Micro-benchmark Shaded fragments / frame Draw calls/frame

720p 1080p 1440p

Instancing 477,616 1,074,353 1,908,921 1
SSAO 1,564,025 3,519,817 6,258,140 3
Tiled shading 2,821,176 6,515,601 11,995,884 106
CHCþþ 1,494,585 2,935,801 5,058,123 1257
Shadow 1,090,964 2,454,591 4,364,315 113
OIT 1,664,881 3,746,105 6,659,751 4
Cube mapping 2,769,889 6,232,271 11,079,509 8
BVH 311,455 578,006 924,559 19
Tessellation 897,784 2,019,504 3,590,389 1

720p

Workload
Resolution

J.-H. Nah et al. / Computers & Graphics 61 (2016) 40–49 43
overall_score devð Þ ¼
X5

subsys ¼ 1

score dev; subsysð Þ �weight subsysð Þ ð2Þ

where dev, bench, subsys, and res indicate each device, each
micro-benchmark, each GPU subsystem, and each screen resolu-
tion, respectively. The maximum value of each score is 100 in our
benchmark environments because all scores are normalized by the
highest frame rates of each experiment. Of course, our benchmark
app can result in scores higher than 100 when another test device
shows higher frame rates than our test devices. Thus, the score 100
means a calibrated baseline using the five test APs launched in late
2014/early 2015; this score calculation metric is similar to that of
Geekbench 3 [11], a well-known CPU benchmark. Note that the
last micro-benchmark in the next section (Tessellation) only
affects the tessellator performance and its result is not used for
calculating the other scores because only AEP-capable GPUs sup-
port tessellation. Finally, when we calculate the overall score, we
give the same weight (20%) to each subsystem because GPU ven-
dors usually try to configure their GPU architectures to provide
balanced performance.
0% 50% 100%

1440p

1080p

720p

Workload

Geometry ALU Texture
ROP Memory

Resolution

Fig. 3. Benchmark 2 – screen-space ambient occlusion.

0% 50% 100%

1440p

1080p

Geometry ALU Texture
ROP Memory

Fig. 2. Benchmark 1 – Geometry instancing with skinned animation.
4. Details of the micro-benchmarks

This section deals with details of the micro-benchmarks. We
have made nine micro-benchmarks and analyzed each benchmark
using nVIDIA Tegra Graphics Debugger. Tables 2 and 3 tabulate
performance-independent statistics and the percentage of the
instruction count of each shader, respectively.

As shown in the tables, characteristics of each benchmark vary
considerably, as a result, each benchmark gives different workloads
to GPU subsystems. The number of primitives reduces by culling
back-facing, off-screen, or very small (o1 pixel) primitives, but
some benchmarks (Instancing and Tessellation) amplify the number
of primitives. The screen resolution also affects the GPU workload
because higher resolution increases the number of shaded frag-
ments, understandably. BVH update and Tessellation benchmarks
additionally include compute and tessellation shader programs,
respectively.

In each subsection, we first briefly summarize the used tech-
nique for the micro-benchmark, after that, we analyze workload
characterization of the micro-benchmark. We also describe our
implementation tips, which are how to port the existing base
OpenGL/CUDA source code to our OpenGL-ES-based mobile
platforms.

4.1. Geometry instancing with skinned animation

Geometry instancing facilitates reusing geometry data multiple
times, and it is one of the new features in OpenGL ES 3.0. We
implement a micro-benchmark to test the feature. We first use a
simple geometry instancing code in OpenGL ES 3.0 Programming
Guide [12] as the base code, after that, we additionally implement
skinned animation and per-vertex lighting to the vertex shader
code. We render 25 elephants, and each elephant object consists of
84K triangles. Thus, total 2.1M triangles are rendered in this scene.
As a result, this implementation mainly concentrates on geometry
processing.

4.2. Screen-space ambient occlusion

Screen-space ambient occlusion (SSAO) [13,14] is an approx-
imation technique for ambient occlusion, and it is now commonly
used in various desktop/console games. This technique approx-
imates the ambient occlusion effect by using depth and normal
values of adjacent pixels in the screen space, so it can be imple-
mented using multiple render targets (MRTs) in OpenGL ES 3.0.

As the base source code, we use a sample code with the Dragon
Scene (100K triangles) included in OpenGL SuperBible [15]. This
code executes two passes, render and SSAO, and a floating-point
MRT is used to transfer color data and combined depth/normal data
from the render pass to the SSAO pass. However, floating-point
render targets are not officially supported in OpenGL ES 3.1. To work
around this obstacle, we instead use two-channel RG textures with a
floating-point encoding/decoding technique in [16]; the data are
dealt with as an 8þ8-bit fixed-point representation.

We also add two further optimizations to the original code for
higher performance. First, we separate depth and normal data for
better texture cache utilization. Second, we use the same size of
the render target texture as the initially selected resolution for the



0% 50% 100%

1440p

1080p

720p

Workload

Geometry ALU Texture
ROP Memory

Resolution

Fig. 4. Benchmark 3 – tiled deferred shading.

0% 50% 100%

1440p

1080p

720p

Workload

Geometry ALU Texture
ROP Memory

Resolution

Fig. 5. Benchmark 4 – occlusion culling.

Table 3
The percentage of the instruction count of a vertex shader (VS), pixel shader (PS), tessellation controller shader (TCS), tessellation evaluation shader (TES), and a compute
shader (CS) in each micro-benchmark. The values in this table were obtained from nVIDIA Tegra Graphics Debugger.

Micro-benchmark VS (%) PS (%) TCS þ TESn or CSnn (%)

720p 1080p 1440p 720p 1080p 1440p 720p 1080p 1440p

Instancing 96.9 94.8 92.6 3.1 5.2 7.4
SSAO 6.0 2.0 0.7 94.0 98.0 99.3
Tiled shading 33.5 12.2 11.4 66.5 87.8 88.6
CHCþþ 77.7 69.2 61.1 22.3 30.8 38.9
Shadow 55.8 41.8 31.0 44.2 58.2 69.0
OIT 41.4 31.2 24.4 58.6 68.8 75.6
Cube mapping 55.4 43.0 34.0 44.6 57.0 66.0
BVHnn 25.0 21.6 18.5 28.6 41.1 50.8 45.5 37.1 31.2
Tessellationn 0.7 0.6 0.5 20.0 31.9 42.6 79.3 67.6 56.9

J.-H. Nah et al. / Computers & Graphics 61 (2016) 40–4944
final off-screen render target (720p, 1080p, or 1440p) to reduce
unnecessary computations caused by a resolution mismatch. This
is possible by using a non-power-of-two texture introduced in
OpenGL ES 3.0.

The SSAO shader code consists of somewhat complex ALU
operations, e.g. 32 iterations for random sampling are performed
per pixel. This random sampling makes an incoherent texture
access pattern. Therefore, the SSAO benchmark is compute-
intensive at low resolutions and memory-intensive at high
screen resolutions as depicted in Fig. 3.
4.3. Tiled deferred shading

Tiled deferred shading [17] with many light sources is a
representative application of MRTs. The aim of this technique is to
cull unnecessary lighting operations. To achieve this, first the
geometry is rendered into the fat G-buffers. Next, a screen-space
grid is built on a CPU by dividing the screen into multiple tiles. The
minimum and maximum depth values of each tile are first cal-
culated (a min–max reduction), after that, all light sources in the
scene are assigned to each affected 2.5D (2D þ a depth range) grid
cell. The final lighting operations are then performed using the G-
buffers and the light grid.

For this benchmark, we start from the authors' OpenGL
implementation. This code cannot be directly executed on mobile
devices due to the two following reasons. First, the grid cell data
constructed on a CPU are stored in uniform block objects, but the
maximum uniform block size in mobile GPUs is usually from 16K
to 64K. This size limit heavily restricts the maximum number of
light sources. Second, as the SSAO benchmark, floating-point MRTs
cannot be used, so transmission of floating-point depth data from
the depth min–max reduction shader to the CPU grid construction
is impossible with glReadPixels().

To resolve the above problems, we use the following approa-
ches. First, we store the grid data to textures instead of uniform
buffers. Second, we use the floatBitsToUint() function to handle
the depth data as unsigned integer data. By decoding a float into
an unsigned int, we can easily obtain the original floating point
data from the integer data.

The rendered scene in Fig. 4 is CryTek Sponzawith 262K triangles
and 1024 point light sources. This benchmark is very compute-
intensive because multiple render passes with complex fragment
shaders are executed. Many texture operations and memory acces-
ses are also required for G-buffer and texture accesses.
4.4. Occlusion culling

Occlusion queries are supported in OpenGL ES 3.0 and can be
used for occlusion culling in large scenes. Coherent hierarchical
culling revisited (CHCþþ) [18] is a famous technique for occlusion
culling on desktop platforms, so we choose this technique to
measure the occlusion query performance. The CHCþþ algorithm
traverses a bounding volume hierarchy (BVH) in a front-to-back
order and checks visibility of nodes using the occlusion queries on
the nodes. As a result, occluded objects are culled (Fig. 5).

The authors' source code uses fixed-function pipelines, so we
need to convert that to a shader-based code for our benchmark
because OpenGL ES 2.0 or later no longer supports fixed-function
pipelines. We have unified the three render functions (sky ren-
dering, object rendering, and box rendering) to one shader pro-
gram with branches to reduce the number of shader program
changes. We also try to reduce driver overhead by using vertex
array objects and reducing unnecessary transfer of the uniform
matrix variables when the render state is changed. Furthermore,
we disable visible node skipping using temporal coherence in the
original CHCþþ algorithm because this skipping sometimes
produces unfair results when benchmarking different devices; the
use of temporal coherence can negatively affect the result in the
low frame-rate case.

The test scene in this benchmark is the Vienna scene with 2.5M
triangles. This benchmark is bounded by draw operations because
the number of draw calls per frame in the scene is around 1200.
On the GPU side, various GPU subsystems are quite evenly uti-
lized; the amount of geometry processing decreases by occlusion



0% 50% 100%

1440p

1080p

720p

Workload

Geometry ALU Texture
ROP Memory

Resolution

Fig. 8. Benchmark 7 – cube mapping and planar reflection.

J.-H. Nah et al. / Computers & Graphics 61 (2016) 40–49 45
queries, and the shader program and other function calls are
relatively simple.

4.5. Shadow mapping

Shadow mapping is a traditional technique to render shadows
on raster-based GPUs. In this technique, depth values in the light's
view are first stored in a shadow map. After that, the distance
between the light and each point in the camera's view is compared
to the distance stored in the shadow map; if the former is higher
than the latter value, the point is in shadow because there is an
occluder (or occluders) between the light and the point (Fig. 6).

Shadow mapping often suffers from aliasing artifacts, so cas-
caded shadow mapping [19,20] was proposed to reduce the arti-
facts. This method uses multi-resolution shadow maps; objects
near the camera fetch a higher resolution map, and objects far
from the camera fetch a lower resolution map. As the example
code of cascaded mapping in the Adreno SDK, we store four sha-
dow maps with different resolutions into a single 3D texture; the
support of 3D textures in OpenGL ES 3.0 enables us to do that.

To render dynamic shadows created by both movable light
sources and dynamic objects, a hand object (1.5K triangles) moves
in the Sponza (66K triangles) scene and the position of a point
light source in the scene is continuously changed. We use a large
cascaded shadow map (up to 2K�2K), so this benchmark is useful
on texturing performance measurement. Also, a lot of depth tests
are performed for both the shadow map generation and render
passes.

4.6. Order-independent transparency

Order-independent transparency (OIT) is one of the challenging
topics on raster-based GPUs because simple alpha blending may
result in different images according to the order of submitted
geometry. Weighted blended OIT [21] is a lightweight algorithm
introduced recently. This approach gives different weights to
fragments according to their depth values when these fragments
are blended. Only classic blending operations with bounded
memory are required for the approach, but the blended images are
plausible.

Our OpenGL ES implementation adds two additional pre-Z
passes in order to get min/max depth values due to lack of
0% 50% 100%

1440p

1080p

720p

Workload

Geometry ALU Texture
ROP Memory

Resolution

Fig. 6. Benchmark 5 – shadow mapping.

0% 50% 100%

1440p

1080p

720p

Workload

Geometry ALU Texture
ROP Memory

Resolution

Fig. 7. Benchmark 6 – order-independent transparency.
floating-point render targets. The depth range obtained from the
pre-Z passes is used in a linear depth weight function modified by
us. The range of weighted sum values is set from 0.0 to 1.0 to use
RGBA textures for blending. As a result, the workload of this
benchmark varies according to the resolution. When we render
the Dragon scene with 871K triangles (Fig. 7) at 720p resolution, it
shows geometry-intensive feature due to the pre-Z passes; in
contrast, rendering the same scene at 1440p shows a fragment-
intensive feature due to the increasing number of depth tests,
alpha blending, and fragment shading.

4.7. Cube mapping and planar reflection

Cube mapping [22] is a widely used technique for reflection
effects. In this method, an environment image is projected onto
the six faces of a cube map, and the map is fetched by setting
incident and normal vectors when reflective objects are rendered.
Because dynamic cube map generation is costly, cube mapping is
usually used for representing static environments, such as the sky
and mountains. Therefore, in case of dynamic reflection in real-
time rendering, planar reflections using the stencil buffer [23] are
usually used. This technique renders a reflected image onto a
planar object (e.g., a floor) with reflective materials, and restricts
the reflected area by testing stencil values (Fig. 8).

We implement the above two techniques together. In the basic
cube-mapping sample with a dragon statue (100K triangles) in
OpenGL SuperBible, we add two more objects (a bunny statue with
40K triangles and a lady bug statue with 83K triangles) and a
mirror floor below the three objects. We also implement a planar
reflection code using the stencil buffer for the mirror floor. The
resolution of the cube map is 1K�1K.

This mixed implementation is very common for reflections in
traditional graphics applications. Thus, this micro-benchmark
represents features of traditional feed-forward rendering in sim-
ple scenes: multi-pass geometry processing for reflections, simple
shader processing, cube-map texturing, and depth/stencil tests.

4.8. BVH update and visualization

OpenGL ES 3.1 introduces compute shaders. The BVH update
and visualization benchmark in this subsection is an example of
how to integrate compute shaders into existing graphics applica-
tions. This benchmark updates the BVH of a scene on the fly and
visualizes the BVH on the screen. The BVH is updated in parallel on
the GPU in accordance with the level-by-level method described
in gProximity [24]. This BVH update can be used for BVH-based
collision detection [24], ray tracing [25], and occlusion culling [18]
in dynamic scenes (Fig. 9).

This benchmark comprises four stages: the key-frame inter-
polation, BVH update, object render, and BVH visualization stages.
Among the stages, the first and second stages are executed on
compute shaders. We had originally unified those two stages,
however, we decided to separate those stages to decrease the
number of shader storage buffer objects (SSBOs) because some
mobile GPUs (Mali and PowerVR) limit the maximum number of
SSBOs to only four. The separation decreases the number of SSBOs



0% 50% 100%

1440p
1080p
720p

Workload

Geometry ALU Texture

ROP Memory Tessellator

Resolution

Fig. 10. Benchmark 9 – displacement mapping with tessellation.

0% 50% 100%

1440p

1080p

720p

Workload

Geometry ALU Texture
ROP Memory

Resolution

Fig. 9. Benchmark 8 – BVH update and visualization.

J.-H. Nah et al. / Computers & Graphics 61 (2016) 40–4946
by one because the interpolated vertices are input to the BVH
update program instead of vertices of two key frames. Even
though this separation leads to a performance penalty due to
increased memory read/write operations, the benchmark is now
able to be executed if the maximum number of SSBOs is limited. In
the BVH visualization stage, we perform alpha blending for better
visibility; if alpha blending is disabled, the objects can be hidden
behind lines of BVH nodes.

For this benchmark, we render the Cloth Simulation scene (92K
triangles) with key-frame interpolation. This benchmark is not
only compute-intensive (for BVH update) but also ROP-intensive
(for BVH visualization) because multiple lines can be blended over
each other and a lot of depth tests are also required between lines
and the object in the BVH visualization stage. Even though tex-
tures are not used in this scene, texturing is also heavily performed
on Mali GPUs to handle SSBOs, in contrast to AMD GPUs.

For workload characterization of this benchmark, profiling
results from the Tegra Graphics Debugger are not used; our char-
acterization requires GPU subsystem utilization, but the debugger
does not show the utilization when compute shaders are pro-
cessed because it does not operate in the OpenGL mode but
operate in the OpenCL/CUDA mode for the case.

4.9. Displacement mapping with tessellation

The tessellation shader is one of the main features of AEP.
Between the tessellation control and evaluation shaders, a hard-
ware tessellator is located, and we test its performance in this
displacement mapping benchmark. The source code and scene for
this benchmark are from OpenGL SuperBible; a terrain scene
(Fig. 10) is rendered by using displacement mapping and tessel-
lation. The process is briefly described as follows. First, a 64�64
patch is input. After that, the tessellation levels are calculated in
the tessellation control shader at once. Next, the result from the
tessellator is then output to the tessellation evaluation shader, and
displacement mapping is performed in the shader using a height
map. Finally, texture mapping is performed in the fragment
shader.

We slightly change the setting of the original code and scene.
First, to stress out the tessellation workload, we increase the tes-
sellation factor by a factor of eight. Second, we compress the
height map and the color map in the scene using EAC and ETC2,
respectively. This texture compression results in decreased mem-
ory traffic and slightly increased performance. For the workload
characterization of this micro-benchmark, only nVIDIA and AMD's
profilers, which have tessellator utilization counters, are used.
5. Experiments and results

5.1. Experimental setup

For our experiments, we chose five different devices including
different APs launched in late 2014 to early 2015 in Table 4; LG G3
Screen is a mid-end smartphone, LG G4 and Samsung Galaxy Note
4 are flagship smartphones, ThinkWare iNaviTab XD10 Duo is a
dual boot tablet (Android and Windows 10), and nVIDIA Shield
Tablet is a gaming tablet. Each AP has a GPU from different ven-
dors, so we can compare different GPU architectures from the
chosen devices. We have updated the Android version of each
device to the latest version, so all the devices now support OpenGL
ES 3.1. Among them, Adreno 418, Mali T760, HD Graphics, and
Kepler GK20A support AEP as well.

Before we introduce the benchmark results in the next sub-
section, we briefly compare the GPU architectures. First, we
compare the architectures in terms of the rendering approach.
PowerVR is based on Imagination Technologies' unique tile-based
deferred rendering architecture (TBDR). This architecture is basi-
cally the same as the tile-based rendering architecture (TBR),
which includes local tile memory to reduce external memory
accesses for per-fragment operations. However, in contrast to TBR,
TBDR defers fragment shading operations until the visibility of the
fragments is known for effective overdraw reduction. Mali is based
on TBR, and its forward pixel kill technique reduces the amount of
operations for further rejected pixels. Adreno includes Flexrender
which is a technique for automatic switching between TBR and
immediate-mode rendering (IMR); TBR is basically used for nor-
mal scenes to decrease memory traffic and IMR is used for scenes
with low-depth complexity or high polygon counts to decrease
tiling overhead. The mode is automatically chosen by the driver.
Intel HD Graphics (with 12 execution units) is the lowest version
of Intel's 8th generation HD Graphics series for low-power ultra-
mobile devices (smartphones and tablets). Thus, this GPU archi-
tecture inherits the feature of integrated HD graphics series based
on IMR. nVIDIA Kepler GK20A was also originated from the
desktop Kepler architecture based on IMR, and some optimizations
were added in order to increase power efficiency. To reduce the
required memory bandwidth, depth compression units and hier-
archical depth buffers are included in GK20A in common with the
desktop Kepler architecture.

Second, we compare the ALUs in the GPU architectures. The
single instruction, multiple threads (SIMT) architecture with scalar
ALUs is used in PowerVR (later 6 series), Adreno (later 300 series),
and Kepler. In contrast, Mali is based on the VLIW architecture
with a mix of vector and scalar ALUs. Scalar processing is robust
for the width of the data, but branch divergence can decrease ALU
utilization. Vector processing usually achieves high ALU utilization
in traditional graphics applications and have less penalty from
branch divergence. However, a lot of scalar data can decrease ALU
utilization because the ALU efficiency heavily depends on the
compiler in that case. Interestingly, Intel HD Graphics supports
both modes; vertices are arranged in the array of structures (AOS)
form for SIMD4 or SIMD4x2 modes as vector processing, and
pixels and compute data are arranged in the structure of arrays
(SOA) form for SIMD8 or SIMD16 modes as scalar processing.

Third, Adreno 418, HD Graphics, and Kepler GK20A include
hardware tessellators to support AEP. In contrast, ARM Mali T760
supports tessellation via compute shaders, and new AEP-support
drivers (r7p0 or higher) have been recently released for this



Table 4
Benchmarking devices. The GFXBench results (unit: FPS) were obtained from 1080p off-screen tests.

Device LG G3 Screen LG G4 Samsung Galaxy Note 4 Thinkware iNaviTab XD10 Duo nVIDIA Shield Tablet

AP LG Qualcomm Samsung Intel nVIDIA
Nuclun LG7111 Snapdragon 808 Exynos 5433 Atom X5-Z8300 Tegra K1

Process 28 nm 20 nm 20 nm 14 nm 28 nm

Memory 32-bit dual-channel 32-bit dual-channel 32-bit dual-channel 64-bit single-channel 32-bit dual-channel
756 MHz LPDDR3 933 MHz LPDDR3 825 MHz LPDDR3 800 MHz DDR3L RS 933 MHz LPDDR3

GPU Imagination Technologies Qualcomm ARM Intel nVIDIA
PowerVR G6430 Adreno 418 Mali T760MP6 HD Graphics (12 EUs) Kepler GK20A

Clock frequency 460 MHz 600 MHz 700 MHz 500 MHz 852 MHz

Driver version 1.4 136.0 r7p0 4.51.85-R 361.0

GFXBench Manhattan 3.1 4.8 11.4 11.5 11.4 23.1
GFXBench Car Chase N/A 6.7 7.1 7.4 14.9

Table 5
Benchmark results (unit: FPS). The bold fonts represent the highest values in each benchmark.

Micro-benchmark 720p resolution 1080p resolution 1440p resolution

PVR Adreno Mali HD Kepler PVR Adreno Mali HD Kepler PVR Adreno Mali HD Kepler
G6430 418 T760MP6 Graphics GK20A G6430 418 T760MP6 Graphics GK20A G6430 418 T760MP6 Graphics GK20A

Instancing 5.0 16.5 21.3 20.5 22.8 4.8 13.8 21.0 19.1 22.5 5.0 12.3 20.6 17.8 23.2
SSAO 11.3 35.1 28.6 27.9 66.0 6.1 13.5 14.0 12.8 25.8 3.9 5.8 6.5 6.8 10.5
Tiled shading 5.6 10.6 6.4 11.3 20.4 3.8 7.7 4.2 6.7 10.1 2.6 3.6 3.2 4.0 6.8
CHCþþ 4.3 6.7 6.2 22.6 25.0 3.7 6.4 5.7 21.2 23.5 3.1 5.4 5.4 18.7 22.0
Shadow 8.3 27.4 36.1 41.0 96.2 6.5 22.0 26.8 29.2 75.7 4.7 17.3 19.9 21.4 59.0
OIT 10.2 22.6 27.9 25.2 44.6 7.9 18.2 25.2 17.8 36.2 6.5 14.1 20.3 13.0 26.4
Cube mapping 32.7 69.4 73.2 51.8 73.6 24.6 47.7 64.7 35.6 69.1 19.5 34.6 56.3 26.5 47.9
BVH 22.6 45.6 31.5 48.8 66.3 16.4 31.2 20.1 34.2 49.4 12.8 24.4 13.8 26.6 37.7
Tessellation N/A 21.3 15.0 34.4 63.6 N/A 19.6 14.6 29.3 60.3 N/A 17.9 14.8 25.4 56.9

Fig. 11. Benchmark scores.

J.-H. Nah et al. / Computers & Graphics 61 (2016) 40–49 47
tessellation support. The comparison of these different approaches
will be described in the next section.

5.2. Results and analysis

Table 5 and Fig. 11 summarize the results of our experiments.
First, Table 5 includes the measured frame rates obtained from the
devices in Table 4. We skip half of eglSwapBuffers calls if the frame
rates are higher than 60 FPS. According to Eqs. (1) and (2) in
Section 3, the scores in Fig. 11 were calculated from the results
in Table 5.

The overall scores show that the results from L-Bench is similar
to the results of GFXBench 4.0 based on OpenGL ES 3.1/AEP in
Table 4. Both results from GFXBench and L-Bench indicate that
PowerVR G6430 shows the lowest performance among the test
GPUs, Adreno 418, Mali T760MP6, and Intel HD Graphics are
similar grade GPUs, and Kepler GK20A provides the highest per-
formance. It means that our micro-benchmark choice and score
calculation metric are reasonable. Note that a higher score does
not mean a better GPU architecture because the target platforms
(smartphones vs tablets), the process technologies (14–28 nm),
and memory clock frequencies are different between the test
devices as described in Table 4. Generally, the tablet form factor
enables the possibility to run at higher clock speeds for longer
periods of time than compared to a more thermally constrained
phone form factor, so tablets usually have performance advantages
compared to smartphones. To prevent thermal mitigation situa-
tions on our experiments, our benchmark has a limited total
execution time.

We now analyze the results of our experiments. First of all,
Kepler GK20A achieves the highest frame rates in most cases.
Therefore, this GPU gets the highest scores in all sections as



J.-H. Nah et al. / Computers & Graphics 61 (2016) 40–4948
depicted in Fig. 11, and this result is the reference point for further
analysis of other GPUs.

PowerVR G6430 shows approximately a quarter of Kepler
GK20A's performance. Its TBDR architecture does not result in very
distinguished speedup in our benchmarks; TBDR is beneficial for
traditional forward shading in scenes with high depth complexity
and no alpha blending, but a number of our micro-benchmarks
use deferred shading with manual pre-Z stages, alpha blending, or
occlusion culling.

Adreno 418 shows approximately half of the performance
compared to Kepler GK20A. This GPU provides balanced perfor-
mance between subsystems, and is generally advantageous at
low resolution compared to Mali T760MP6. Additionally, relative
tessellation performance of Adreno 418 is 32% compared to
Kepler GK20A.

Mali T760MP6 achieves high performance when triangle
counts are high (Geometry instancing and Weighted OIT) or
scenes are simple (Cube mapping). On the other hand, this GPU
can suffer from low ALU utilization when the shader has many
scalar ALU operations as the BVH update benchmark. Additionally,
its tessellation performance is lower than that of Adreno 418 and
HD Graphics; this result shows that compute-shader-based S/W
tessellation can be area-efficient but is likely to be hard to provide
high tessellation performance.

Intel HD Graphics gets relatively higher overall scores (6–8
points) than Adreno 418 and Mali T760MP6 in our benchmark. Its
hybrid vector/scalar processing results in high frame rates in both
VS-oriented (Geometry instancing) and CS-oriented (BVH update)
benchmarks. Additionally, its driver handles the CHCþþ bench-
mark very well, as a result, the GPU gets a considerable overall
score gain from the micro-benchmark. This is an interesting result;
even though occlusion queries are supported from OpenGL ES 3.0,
tile-based mobile GPU architectures (PowerVR, Adreno, and Mali)
usually cannot effectively perform occlusion queries due to a dif-
ficulty in batching multiple draw calls for a tiling process until the
query result becomes available. In contrast, HD Graphics and
Kepler, derived from IMR-based desktop GPU architectures, do not
carry heavy performance penalty when occlusion queries are
made. Thus, we feel the necessity of a new occlusion culling
algorithm dedicated for tile-based GPUs to more effectively use
occlusion queries, but it is out of scope of this paper.
6. Conclusions, limitations, and future work

We have presented a benchmark set based on OpenGL ES 3.1/AEP,
called L-Bench. This benchmark set provides a hint to analyze GPU
performance by combining results of mid-sized micro-benchmarks.
We have also tested five mobile devices with L-Bench.

We believe L-Bench can be beneficial to various types of
developers and users. First, GPU architects can understand bot-
tlenecks of their GPUs and improve their GPU architectures. Sec-
ond, AP designers can exploit L-Bench to evaluate performance of
GPU IP. Third, mobile graphics programmers may utilize the
OpenGL ES implementation tips when they try to include the
graphical effect in Section 4 in their applications. Finally, end-users
can compare GPU performance of mobile devices before their final
purchase decision.

L-Bench is not a perfect tool for GPU benchmarking, and we
would like to resolve its limitations as future work. First, the
current version of L-Bench only measures performance, so it is
hard to know power efficiency from L-Bench alone. Additionally,
measurement of GPU power efficiency is difficult because tem-
peratures and power consumption on devices are affected by
various factors (e.g., CPUs, GPUs, displays, thermal management
policies, etc.). If L-Bench is extended with existing energy
measurement frameworks [7,9], we think the results from the
benchmark suite can be more fruitful. Second, there is some room
for improvement in terms of reliability. For example, profiling and
measurement at a draw-call level will provide more accurate
results than the current frame-level analysis. Additionally, if our
benchmark suite can collect data from each GPU vendor's profiling
tool on the fly, we will be able to get useful data for additional
analysis such as potential bottlenecks, memory traffic, etc. Third,
as mentioned in Section 1, our current implementation excludes
the use of vendor-specific extensions even though some apps can
use those extensions for better performance on specific devices. As
future studies, we are interested in how much representative
OpenGL ES extensions affect each micro-benchmark (e.g., the use
of pixel local storage [26] for MRT-based benchmarks). Finally, our
benchmark is implemented on OpenGL ES and Android platforms.
If we extend the current version of L-Bench to a cross-platform
benchmark suite, we can execute the app on other platforms, such
as Apple iOS. We are also interested in porting our OpenGL ES code
to newer graphics APIs, such as DirectX 12, Vulkan, and Metal.
Acknowledgments

We would like thank Seong-Wook Min, Sunho Ki, Youngduke
Seo, Hanseng Choi, and Jinhong Park for supporting the test
devices. Byeongjun Choi and Jin-Woo Kim helped us with the
video recording. The used scenes are courtesy of Doug L. James and
Christopher D. Twigg (Elephant); Frank Meinl (Crytek Sponza);
Marko Dabrovic (Sponza); Roel Reijerse (the cube map); the
Stanford 3D Scanning Repository (Bunny and Dragon); UNC
Dynamic Scene Benchmarks (Cloth-ball simulation); and the Utah
3D Animation Repository (Hand). The Ladybug and terrain scenes
are included in OpenGL Superbible, and the Vienna scene is
included in the CHCþþ source code.
Appendix A. Supplementary data

We attach the benchmark apk file as a supplementary material.
To properly execute the benchmark app, both Android 5.0þ and
OpenGL ES 3.1þ are required.

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.cag.2016.09.002.
References

[1] Kishonti Informatics. GFXBench 4.0. 〈https://gfxbench.com/〉; 2016.
[2] Basemark Ltd. Basemark ES 3.1. 〈https://www.basemark.com/product-catalog/

basemark-es-3-1/〉; 2015.
[3] Futuremark Corporation. 3DMark Sling Shot Benchmark. 〈http://www.future

mark.com/benchmarks/3dmark/android〉; 2015.
[4] Standard Performance Evaluation Corporation. SPECviewperf 12. 〈https://

www.spec.org/gwpg/gpc.static/vp12info.html〉; 2013.
[5] Antochi I, Juurlink B, Vassiliadis S, Liuha P. GraalBench: a 3D graphics

benchmark suite for mobile phones. In: ACM SIGPLAN notices - LCTES '04; vol.
39. 2004, p. 1–9.

[6] Arnau JM, Parcerisa JM, Xekalakis P. TEAPOT: a toolset for evaluating perfor-
mance, power and image quality on mobile graphics systems. In: Proceedings
of international conference on supercomputing (ICS '13), 2013. p. 37–46.

[7] Ma X, Deng Z, Dong M, Zhong L. Characterizing the performance and power
consumption of 3D mobile games. Computer 2013;4:76–82.

[8] Johnsson B, Ganestam P, Doggett M, Akenine-Möller T. Power efficiency for
software algorithms running on graphics processors. In: Proceedings of high-
performance graphics (HPG '12), 2012. p. 67–75.

[9] Johnsson B, Akenine-Möller T, Sathe R, Foley T, Salvi M, Andersson M, et al.
Measuring per-frame energy consumption of real-time graphics applications.
J Comput Graph Technol 2014;3:1.

[10] Ström J, Pettersson M. ETC 2: texture compression using invalid combinations.
In: Proceedings of graphics hardware, 2007. p. 49–54.

[11] Primate Labs. Geekbench 3. 〈https://www.primatelabs.com/geekbench/〉; 2013.

http://dx.doi.org/10.1016/j.cag.2016.09.002
https://gfxbench.com/
https://www.basemark.com/product-catalog/basemark-es-3-1/
https://www.basemark.com/product-catalog/basemark-es-3-1/
http://www.futuremark.com/benchmarks/3dmark/android
http://www.futuremark.com/benchmarks/3dmark/android
https://www.spec.org/gwpg/gpc.static/vp12info.html
https://www.spec.org/gwpg/gpc.static/vp12info.html
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref1
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref1
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref1
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref2
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref2
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref2
https://www.primatelabs.com/geekbench/


J.-H. Nah et al. / Computers & Graphics 61 (2016) 40–49 49
[12] Ginsburg D, Purnomo B, Shreiner D, Munshi A. OpenGL ES 3.0 programming
guide. 2nd ed. Addison-Wesley Professional; 2014 p. 169-172.

[13] Mittring M. Finding next gen: Cryengine 2. In: ACM SIGGRAPH 2007 courses,
2007. p. 97–121.

[14] Shanmugam P, Arikan O. Hardware accelerated ambient occlusion techniques
on GPUs. In: Proceedings of the 2007 symposium on interactive 3D graphics
and games. ACM; 2007. p. 73–80.

[15] Sellers G, Wright RS, Haemel N. OpenGL SuperBible: comprehensive tutorial
and reference. 7th ed. Addison-Wesley; 2015, 624-663.

[16] Gerasimov P. Omnidirectional shadow mapping. In: GPU Gems: programming
techniques, tips, and tricks for real-time graphics. Oxford University Press;
2004. p. 193–204 [chap. 12].

[17] Olsson O, Assarsson U. Tiled shading. J Graph GPU Game Tools 2011;15
(4):235–51.

[18] Mattausch O, Bittner J, Wimmer M. CHCþþ: coherent hierarchical culling
revisited. Comput Graph Forum (EUROGRAPHICS 2008) 2008;27(2):221–30.

[19] Engel W. Cascaded shadow maps. In: ShaderX5: advanced rendering techni-
ques. ShaderX series. Charles River Media, Inc; 2007. p. 197–206 [chap. 4].
[20] Dimitrov R. Cascaded shadow maps. Developer Documentation. NVIDIA Corp;
2007, http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_
shadow_maps/doc/cascaded_shadow_maps.pdf.

[21] McGuire M, Bavoil L. Weighted blended order-independent transparency.
J Comput Graph Technol 2013;2(2):122–41.

[22] Greene N. Environment mapping and other applications of world projections.
IEEE Comput Graph Appl 1986;6(11):21–9.

[23] McReynolds T, Blythe D, Fowle C, Grantham B, Hui S, Womack P. Programming
with OpenGL: Advanced rendering. In: SIGGRAPH, vol. 97, 1997. p. 144–153.

[24] Lauterbach C, Mo Q, Manocha D. gProximity: hierarchical GPU-based opera-
tions for collision and distance queries. Comput Graph Forum (EURO-
GRAPHICS 2010); 2010;29(2):419–28.

[25] Nah JH, Kim JW, Park J, Lee WJ, Park JS, Jung SY, et al. HART: a hybrid
architecture for ray tracing animated scenes. IEEE Trans Vis Comput Graph
2015;21(3):389–401.

[26] Bjørge M, Martin S, Kakarlapudi S, Fredriksen JH. Efficient rendering with tile
local storage. In: ACM SIGGRAPH 2014 talks, 2014. p. 51:1.

http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref4
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref4
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref4
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref5
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref5
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref5
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref5
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref5
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref5
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref5
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref5
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref5
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascadedshadowmaps/doc/cascadedshadowmaps.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascadedshadowmaps/doc/cascadedshadowmaps.pdf
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref7
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref7
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref7
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref8
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref8
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref8
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref9
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref9
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref9
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref9
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref10
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref10
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref10
http://refhub.elsevier.com/S0097-8493(16)30111-X/sbref10

	L-Bench: An Android benchmark set for low-power mobile GPUs
	Introduction
	Related work
	Design criteria and implementation process
	Details of the micro-benchmarks
	Geometry instancing with skinned animation
	Screen-space ambient occlusion
	Tiled deferred shading
	Occlusion culling
	Shadow mapping
	Order-independent transparency
	Cube mapping and planar reflection
	BVH update and visualization
	Displacement mapping with tessellation

	Experiments and results
	Experimental setup
	Results and analysis

	Conclusions, limitations, and future work
	Acknowledgments
	Supplementary data
	References




