
Computers & Graphics (2024)

Contents lists available at ScienceDirect

Computers & Graphics
journal homepage: www.elsevier.com/locate/cag

QuickETC2-HQ: Improved ETC2 encoding techniques for real-time, high-quality
texture compression

Jae-Ho Naha,∗

a Department of Computer Science, Sangmyung University, 20 Hongjimun 2-gil, Jongno-gu, Seoul, South Korea

A R T I C L E I N F O

Article history:
Received June 23, 2024

Keywords: Texture compression,
Texture encoding, Texture map-
ping, ETC1, ETC2

A B S T R A C T

ETC2 is a widely-used texture compression format in Android devices and ap-
plications, so efficient ETC2 encoding can reduce application development time.
We present QuickETC2-HQ, a set of improved ETC2 encoding techniques for
real-time, high-quality texture compression. Our modifications to the luma-
based approximations used in etcpak 1.0, the state-of-the-art encoder which in-
tegrated the QuickETC2 method, allow the execution of additional compression
modes and more accurate error comparisons. As a result, the image quality of
QuickETC2-HQ is improved compared to that of etcpak 1.0 and is comparable
to that of the reference encoder, ETCPACK 2.74, with the fast mode. In terms
of performance, QuickETC2-HQ is orders of magnitude faster than ETCPACK,
making it practical for real-time application execution and offline production
builds of applications.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction1

Texture mapping is one of the fundamental techniques2

in computer graphics. To create realistic and stunning3

visual effects, many games and graphics applications in-4

clude various types of high-resolution textures. As a re-5

sult, the number and size of textures have been continu-6

ously increasing. Since textures are typically stored in a7

compressed format to reduce memory bandwidth require-8

ments and storage usage, texture encoding time has also9

been increasing proportionally.10

Texture encoding is often utilized in real-time appli-11

cations. It is considered an alternative option to stan-12

dard video coding in latency-critical applications like cloud13

gaming, extended reality, or machine vision [1]. Some14

other applications, such as 3D reconstruction [2], web-15

browsing [3], texture resizing [4], and view synthesis [5],16

∗Corresponding author
e-mail: jaeho.nah@smu.ac.kr (Jae-Ho Nah)

demand the real-time compression of on-the-fly generated 17

textures. In such cases, encoding speed is as important as 18

encoding quality due to the limited time budget. 19

There are several industry-standard texture compres- 20

sion formats: BC series [6], ETC1/2 [7, 8], ASTC [9], 21

and PVRTC [10]. Among them, ETC1/2 is the most 22

widely used format in the Android platform. According 23

to Google’s analysis in September 2020 [11], 99% and 87% 24

of Android devices support ETC1 and ETC2, respectively. 25

Therefore, efficient ETC1/2 encoders can be useful for de- 26

veloping or running Android apps. 27

The Unity game engine [12] employs three different 28

ETC1/2 encoders to provide flexible speed-quality trade- 29

offs: etcpak [13], ETCPACK [14], and Etc2Comp [15]. etc- 30

pak is a fast encoder, but it results in lower compression 31

quality than the other slower encoders (ETCPACK and 32

Etc2Comp). The reason for this is that its high speed is 33

not only due to highly optimized parallel programming, 34

but also because it restricts encoding modes (up to and 35

including version 0.7) and trials. Nah [16] reported that 36

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 Preprint Submitted for review / Computers & Graphics (2024)

etcpak 0.7 was two to three orders of magnitude faster than1

ETCPACK and Etc2Comp with their fastest settings, re-2

spectively, and the PSNR differences between etcpak 0.73

and the others were approximately one to two dB. To in-4

crease the compression quality, QuickETC2 [17, 16] adds5

high-speed ETC2 T/H-mode encoding logic to etcpak 0.7.6

Using these additional modes can increase encoding time,7

but the heuristic selector of QuickETC2, which is based on8

the early compression-mode decision scheme, compensates9

for this additional encoding cost. As a result, the Quick-10

ETC2 technique improves the quality, speed, or both of11

etcpak 0.7 and has finally been integrated into etcpak 1.0.12

However, etcpak 1.0 sometimes produces compression13

artifacts, such as block artifacts. One of the main rea-14

sons for these artifacts is the luma-based approximations15

used by etcpak. When calculating and comparing block16

errors, etcpak uses the luma values of candidate colors in-17

stead of the separated RGB values. Furthermore, the early18

compression-mode decision scheme in QuickETC2 also re-19

lies on the luma differences of each block to determine20

further processing modes. Although these approximations21

can reduce compression costs, they can also lead to incor-22

rect decisions.23

To address the above issues, we propose a set of improve-24

ments to etcpak 1.0. Firstly, we calculate RGB weights for25

a block with a dominant color channel and partially use26

modified luma values to enhance error calculations, mode27

selections, and clustering. Secondly, we perform compres-28

sion in the ETC2 modes (T, H, and Planar) additionally29

for blocks compressed with the ETC1 individual mode,30

and we standardize the error metrics between the modes.31

This additional calculation reduces block artifacts caused32

by 4x2 or 2x4 subblocks. Finally, we make minor modifi-33

cations to the T/H compression logic in QuickETC2 and34

the solid-color check function in etcpak to minimize quan-35

tization artifacts.36

We performed experiments with the 93 test images in37

different categories (Figures 1, 2, and 3) and compared38

QuickETC-HQ with other encoders (etcpak 1.0 and ETC-39

PACK 2.74). RGBA images in the test set were com-40

pressed using both ETC2 RGB and EAC. The results ex-41

hibit that our approach still keep real-time rates of etcpak42

and improves the compression quality to a level compara-43

ble to ETCPACK’s fast mode.44

The structure and organization of the remainder of this45

paper are as follows. Section 2 will summarize related pa-46

pers and open-source projects, including ETC1 [7], ETC247

[8], etcpak [13], and QuickETC2 [17, 16]. Section 3 will48

describe the new techniques proposed in this paper, along49

with their implementation details. In Section 4, we will50

present quantitative and qualitative analyses of our exper-51

imental results. Finally, in Section 5, we will conclude this52

paper.53

2. Background54

The ETC1 codec began with PACKMAN [18], which55

compresses a 2x4 block by combining a base color per56

block and a luminance modifier per pixel. Later, iPACK- 57

MAN [7] extended PACKMAN in several ways to improve 58

image quality. The main difference between PACKMAN 59

and iPACKMAN is the block size. Instead of the 2x4 60

block used in PACKMAN, iPACKMAN uses a 4x4 block 61

that consists of two 2x4 (vertical) or 4x2 (horizontal) sub- 62

blocks. The base colors of the two sub-blocks can be coded 63

either individually (two RGB444 colors) or differentially 64

(RGB555 base color + RGB333 offset). The intensity (lu- 65

minance) modifier table of iPACKMAN is also different 66

from that of PACKMAN due to their different block sizes. 67

Ericsson contributed the iPACKMAN codec to the 68

Khronos group under the name ETC1, which has become 69

the most widely used format for mobile platforms support- 70

ing OpenGL ES [20] and Vulkan [21]. ETC2 [8] further 71

improves image quality by adding three new modes: T, 72

H, and Planar. T- and H-modes are suitable for blocks 73

with distinct luma and/or chroma variance, and two base 74

colors are calculated, and two more colors are obtained by 75

modulating them. The number of colors per block is lim- 76

ited to four, but the T- or H-modes can represent different 77

partition patterns, similar to BC7 [6] or ASTC [9]. The 78

Planar mode aims to remove banding artifacts caused by 79

the color quantization of ETC1 by storing three edge col- 80

ors of a block and interpolating them for the remaining 81

pixels. This mode is best suited for blocks where colors 82

change smoothly. 83

ETCPACK [14] is the reference encoder for ETC1/2. 84

When compressing an ETC2 block, this encoder gener- 85

ates blocks compressed with all the ETC1/2 modes and 86

selects the best block among them by comparing the errors 87

1-8

9-16

17-24

25-32

33-40

41-48

49-56

57-64

Tex. No.

Fig. 1. 64 test images used in both QuickETC2 and our experiments.
This set includes various types of textures: photos (No. 1-25), game
textures (No. 26-51), GIS map data (No. 52-55), synthesized images
(No. 56-57), and captured images from the real world (No. 58-64).
If you need detailed descriptions of the images, please refer to the
supplemental document of QuickETC2 [16].

Preprint Submitted for review / Computers & Graphics (2024) 3

65-73

74-82

83-91

Tex. No.

Fig. 2. 27 test images rendered by pbrt-v4 [19] to evaluate the performance of a texture codec in streaming rendered content. For convenience,
we will refer to these images as No. 65 to No. 91.

▼Bitmapfont (No. 92)

Bmf_ex1 (No. 93)▶

Fig. 3. Two test textures for font rendering. Each contains white
text on a black background (No. 92) and colored text on a white
background (No. 93), respectively.

of the blocks. Therefore, ETC2 compression takes longer1

than ETC1 compression. McAnlis [22] reported that the2

ETC2 encoding time using the Mali Texture Compression3

Tool [23], which internally includes ETCPACK, was sev-4

eral minutes to 1.3 hours per texture when the slow mode5

was selected.6

The etcpak [13] encoder was released to address the long7

encoding time of ETC2 compression. Its primary goal is a8

high speed, achieving several orders of magnitude speed-9

up compared to other encoders. This speed-up is possi-10

ble due to efficient work distribution and highly optimized11

compression parts using SSE and AVX2 intrinsics. How-12

ever, earlier versions of etcpak (up to and including version13

0.7) did not support the T- and H-modes, which are more14

complex than the ETC1 and Planar modes. Additionally,15

this encoder restricts the number of ETC1 encoding tri-16

als, only utilizing the average color of sub-blocks. Both17

the limited mode support and the limited encoding trials18

can degrade the image quality.19

QuickETC2 [17, 16] addresses the quality degradation of20

etcpak 0.7. QuickETC2 supports high-speed T-/H-block21

compression to reduce block artifacts. Additionally, it op-22

timizes encoding performance by deciding the compression23

mode(s) early based on the luma differences in each block,24

thereby avoiding unnecessary tests. QuickETC2 achieves 25

up to a 3 × speed-up and up to a 1 dB higher PSNR com- 26

pared to etcpak 0.7. Recently, a QuickETC2 patch has 27

been integrated into etcpak 1.0. 28

3. Our Approach 29

3.1. Analysis of etcpak’s compression artifacts 30

Even though the additional modes in QuickETC2 effi- 31

ciently reduce many block artifacts in etcpak 0.7, there 32

is still a quality gap between etcpak 1.0 and other high- 33

quality encoders (e.g., ETCPACK, Etc2Comp, etc.) with 34

their fast modes. Therefore, we need to analyze the com- 35

pression artifacts of etcpak first. For the analysis, we ex- 36

ecuted etcpak 1.0 with 64 test images in the QuickETC2 37

paper (Figure 1), 27 test images rendered by pbrt-v4 [19] 38

(Figure 2), and two images containing pure text (Figure 3). 39

Using the second test set representing various rendering ef- 40

fects can be helpful to judge compression quality in that 41

streaming case [1]. Rendered images similar to Figure 2 42

are not mapped into 3D objects; instead, they can be com- 43

pressed and decompressed using a texture codec for video 44

streaming. 45

According to our analysis, etcpak 1.0 exhibited several 46

artifact patterns, as shown in Figure 4. We will analyze the 47

reasons for each artifact type in the following descriptions. 48

To better understand the following description, please refer 49

to the flow chart of etcpak’s ETC2 compression, illustrated 50

in Figure 5. 51

The first artifact type is posterization, which appeared 52

in Atlas. When all the color values in a block are the 53

same, etcpak’s solid-color check function quickly deter- 54

mines the block color through RGB555 quantization and 55

skips further processing. This technique had been used for 56

the ETC1-only mode in etcpak 0.7, but etcpak 1.0 forces 57

this early filtering for both ETC1 and ETC2 encodings. 58

This filtering accelerates the compression of background 59

parts, but its simple quantization can bring out unneces- 60

sary background boundaries. If most blocks in a texture 61

4 Preprint Submitted for review / Computers & Graphics (2024)

Original

etcpak 1.0

Atlas

(No. 46)

Jelly

(No. 56)

Lorikeet

(No. 25)

Vase_

plant

(No. 42)

Sponza_

curtain_diff

(No. 36)

Iscv2_

u2_v2

(No. 61)

352, 0 216, 412 800,800128, 306693,6997 468,220

Crown

(No. 72)

0,0

Ours

Fig. 4. Artifact patterns appeared in the images compressed by etcpak 1.0: Posterization, banding, block artifacts, and blurring. These
artifacts could be alleviated after applying our approaches as shown in the third row.

are filled with solid colors, this posterization can get worse1

and visible banding can appear, as shown in Iscv2_u2_v2.2

The second type is block artifacts, which are related to3

the conversion from RGB to luma in Equation 1 [24].4

Y = 0.299R + 0.587G + 0.114B (1)5

etcpak 1.0 extensively utilizes the above luma-6

conversion equation for error calculations, early7

compression-mode decisions, and clustering in the8

T-/H-mode compression, thereby reducing computational9

overhead. However, this strategy can sometimes generate10

several artifacts with different aspects and reasons, as11

shown in Jelly, Lorikeet, and Vase_plant.12

In Jelly, etcpak 1.0 shows blocky edges with color bleed-13

ing, which can be handled efficiently by the T- or H-modes14

in ETCPACK. However, etcpak 1.0 selects the ETC1 mode15

instead of T- or H-modes, resulting in the artifacts. The16

reason is that QuickETC2’s early compression-mode de-17

cisions and its clustering during the T-/H-mode compres-18

sion utilize luma values of each texel. The luma values19

of light pink and light blue colors in the Jelly texture are20

similar, so the luma differences of each block are not high21

enough for T- or H-modes to be selected either in the early-22

compression mode decisions (due to the luma differences23

being less than T3=0.38 in QuickETC2 [16]) or in the en-24

code selector (due to low-quality T-/H-mode compression).25

In Lorikeet, the ideal mode for the boundary region26

is Planar to express soft gradients. However, the early-27

compression mode decision scheme does not consider the28

Planar mode because the blocks’ luma differences are29

not less than the predefined threshold value (T2=0.09 in30

QuickETC2 [16]). As a result, etcpak 1.0 selects the ETC131

mode for the region, and the softness of the region was lost.32

The block artifacts in Vase_plant are more visible than33

in the previous cases. The red flower consists of high-34

contrast black and red colors, and due to the absence of35

green and blue colors in the region, the luma values of each 36

pixel are always low. As a result, luma-based approxima- 37

tions fail to maintain compression quality in those cases. 38

For example, the ETC1 mode used in the boundaries re- 39

sults in block artifacts because of improper calculation of 40

distance errors. Additionally, the Planar mode used in the 41

inner part of the petals also amplifies block artifacts. The 42

blue jewel in Crown has very low luma contrasts, so we can 43

see blocky boundaries for a similar reason to Vase_plant. 44

The fourth artifact type is blurring. As shown in 45

Sponza_curtain_diff, compressing a block with a domi- 46

nant color channel (red or blue) could result in a loss of 47

detail. The reason for the blurring in this region is the low 48

luma values, similar to the case of Vase_plant. However, 49

Sponza_curtain_diff and Vase_plant show different arti- 50

fact types because the blurred part in the former has low 51

contrast and no diagonal edges. 52

3.2. Our modifications to minimize the compression arti- 53

facts 54

The artifacts described in Section 3.1 are mainly related 55

to luma-based approximations and encoding-mode skip- 56

ping. To solve these problems, we modify all stages in 57

etcpak 1.0, as illustrated in Figure 5. However, we have 58

not considered extending search spaces to find base colors 59

in each compression mode, as described in THUMB [25] 60

and ETCPACK [14], because this strategy can exponen- 61

tially increase compression time. 62

First, we use the Planar mode to compress solid-color 63

blocks and avoid posterization in the background. When 64

encoding solid-color blocks, the check-solid-color function 65

uses RGB555 quantization and skips further processes 66

(shown by the gray arrow in Figure 5), reducing compres- 67

sion costs. However, RGB676 encoding in the Planar mode 68

preserves color much better in these solid-color cases. It is 69

no surprise that in such situations, 9 bits for dRdGdB in 70

an ETC1 sub-block are set to zero, while the Planar mode 71

Preprint Submitted for review / Computers & Graphics (2024) 5

Early Compression-Mode Decision

Planar-Mode

Compression

ETC1-Mode

Compression

Uncompressed

block

Compressed

block

Ours

T-/H-Mode

Compression

Encode Selector

Check Solid Color

Modified

Part

Original

Path

New Path

Modified

Path

Removed

Path

Fig. 5. A flow chart of the ETC2 RGB compression in etcpak 1.0
(ProcessRGB_ETC2()). We have modified all the sub-functions in
the process.

can allocate more bits for RGB quantization compared to1

ETC1.2

Therefore, we exclusively use the Planar mode in the3

cases to minimize quantization artifacts shown in Figure 4.4

We bypass the early compression-mode decision stage (in-5

dicated by the leftmost red arrow in Figure 5) in this case6

because there is no need to select a different mode in such7

instances.8

Second, we apply variable color weights to blocks with a9

dominant color channel when calculating the luma values10

of the blocks. Equation 1 specifies these color weights as11

0.299, 0.587, and 0.114, chosen based on the human eye’s12

sensitivity to green light. Ström and Akenine-Möller [7]13

demonstrated that the perceptual error metric using these14

weights more accurately represents edges between different15

color areas than the error metric with equal RGB weights.16

However, the fixed color weights for all blocks may not17

be suitable for all cases. In cases where a block has a dom-18

inant color channel, the block’s colors may appear reddish,19

greenish, or bluish. A block with a high level of green may20

not exhibit any issues after compression with the color21

weights specified in Equation 1 due to the high value as-22

signed to the green channel (0.587). However, the weights23

can produce suboptimal results for predominantly reddish24

or bluish blocks, as explained in Section 3.1.25

To identify cases that require changing the color weights,26

we have added an RGB weight calculation function before27

the luma calculation in the early compression-mode28

decision stage. The function calculates new color weights29

through the following steps:30

31

1. For each color channel, we calculate ‘bgrRange’ by 32

subtracting the minimum value from the maximum value 33

among 16 pixels in a block. 34

2. We then compare ‘bgrRange’ values for each chan- 35

nel and identify the maximum value. The corresponding 36

channel for this maximum ‘bgrRange’ is stored in ‘maxB- 37

grCh,’ while the maximum ‘bgrRange’ value itself is stored 38

in ‘maxBgrRange.’ These two values can be used for addi- 39

tional T-/H-mode compression later. 40

3. To obtain ‘totalBgr’ for each channel, we sum up the 41

color values of 16 pixels in that channel. Additionally, we 42

calculate ‘sumOfTotalBgr’ by adding up ‘totalBgr’ values 43

for all channels. 44

4. We evaluate the values of ‘bgrRange’ in each channel 45

and the ratios of ‘totalBgr’ to ‘sumOfTotalBgr.’ The for- 46

mer represents contrast in each channel, while the latter 47

indicates the proportion of each channel’s contribution to 48

the overall color information. 49

4.1. If the ‘bgrRange’ of the red or blue channel exceeds 50

a threshold value (currently set at 1/5), and the ‘totalBgr’ 51

of the red or blue channel accounts for a significant pro- 52

portion (currently higher than 2/3) of ‘sumOfTotalBgr,’ 53

we recalculate the weights. We mix the original weights of 54

each channel from Equation 1 with the ratios of ‘totalBgr’ 55

for each channel to ‘sumOfTotalBgr’ using a 1:1 ratio. 56

4.2. Otherwise, if the conditions in 4.1 are not met, we 57

retain the original color weights as stated in Equation 1. 58

59

The unmodified or modified weights are passed to the 60

stages for further ETC2 encoding, allowing us to select 61

appropriate compression modes and color candidates for 62

reddish or bluish blocks. Figure 6 illustrates an example. 63

Original etcpak 1.0 Ours

 (38, 76, 14) (70, 43, 14)WeightRGB

Fig. 6. RGB weights of a 4x4 block calculated using etcpak 1.0 and
ours. In etcpak, the weight range is [0, 128], so the RGB weights
in Equation 1 (0.299, 0.587, and 0.114) are represented as 38, 76,
and 14, respectively. However, because the RGB difference of the
uncompressed block in the above image is (151, 27, 45), our approach
identifies this block’s dominant color as red and increases the weight
of the red channel from 38 to 70. As a result, our approach can
better preserve the reddish shape thanks to more accurate per-pixel
distance values.

Third, we additionally conduct compression using the T- 64

/H-/Planar modes to an ETC1 block compressed by the 65

individual mode. Unlike the differential mode, the indi- 66

vidual mode uses two different RGB444 base colors. As 67

a result, blocks compressed in this mode may exhibit 4x2 68

or 2x4 block artifacts, particularly along the boundaries 69

between different color areas. The additional compression 70

modes can alleviate this issue. The red and blue arrows 71

6 Preprint Submitted for review / Computers & Graphics (2024)

started from ‘ETC1-Mode Compression’ in Figure 5 indi-1

cate the newly added or modified paths for this additional2

process.3

We perform the additional T-/H-mode compression us-4

ing a modified clustering method only when the luma dif-5

ferences in a block are not high since luma-based cluster-6

ing in QuickETC2 may not efficiently generate appropriate7

clusters in the case. Instead, we use values of the dominant8

color channel for clustering to avoid that case. If the dif-9

ference in the dominant color channel of a block is low (less10

than T2=0.09 in QuickETC2 [16]), we do not execute the11

additional T-/H-mode compression. The reason is the ex-12

pected quality improvement for a low-contrast block may13

be minimal.14

In contrast to the original implementation in etcpak 0.7,15

QuickETC2 omits error calculations in the Planar mode16

because this mode is selected only in low-contrast regions.17

However, this assumption does not hold in the case of mul-18

tiple modes. Therefore, we need to compare the compres-19

sion results from the Planar, ETC1, and T-/H-modes in20

the encode selector, as shown in the red paths in Figure 5.21

We calculate the block error only if the Planar-mode com-22

pression function is additionally called after ETC1 com-23

pression. Otherwise, we skip the error calculation and di-24

rectly encode the block as implemented in QuickETC2.25

Fourth, to ensure a fair comparison between the com-26

pression results from the ETC1 and T-/H-modes, we per-27

form additional error calculations in the encode selec-28

tor. QuickETC2 used a slightly different error calculation29

method for its T-/H-mode compression compared to the30

ETC1 mode in etcpak 1.0. In the ETC1 mode, the luma31

values of the candidates are calculated first and then used32

for error comparisons. There is only one base color per sub-33

block, and the distance modifier per pixel only affects the34

brightness of each pixel. This is a clever strategy to reduce35

overhead of error calculations. In the T-/H-mode com-36

pression, differences between the original and compressed37

pixels are calculated for each color channel and combined38

according to color weights for luma conversion to obtain39

an error value. Because a difference can be a negative40

number, the T- and H-modes use the absolute value in41

contrast to the ETC1 mode. As a result, the errors cal-42

culated in the ETC1 mode can be lower than those in the43

T-/H-modes. This inconsistency can be solved by chang-44

ing the ETC1 compression logic, but it leads to increased45

overhead. Therefore, we enable the additional error cor-46

rection logic in the encode selector only if the current block47

contains a result from the T-/H-mode. If a variable color48

weight is applied to the current block, we disable this addi-49

tional error calculation to prevent leaning too much toward50

the T- or H-mode.51

Fifth, we recommend some minor updates to the T-/H-52

mode compression in QuickETC2. The first update in-53

volves using the colors in four vertices of a block (1st, 4th,54

13th, and 16th pixels) for base color calculation, in addi-55

tion to the colors in pixels with the minimum and max-56

imum luma values. This change is intended to alleviate57

block artifacts that become more visible when the colors 58

of pixels at the block’s vertices are substantially different 59

from those in neighboring blocks. Figure 7 demonstrates 60

the advantages of this vertex-weighted base-color calcula- 61

tion. The second update involves forcing the T-mode if the 62

number of pixels in the smaller cluster is less than four. 63

This change enables a cluster of more than 13 pixels to be 64

expressed with three palette colors instead of one or two. 65

Although these methods may not reduce errors, they can 66

help reduce visible block artifacts. Finally, when select- 67

ing the H-mode or the additional T-mode with the ETC1 68

individual mode, we opt for a more conservative start dis- 69

tance index for error calculations, two steps earlier than in 70

QuickETC2. This approach slightly reduces performance 71

but enhances quality. 72

Original etcpak Ours w/o

VWBC

Ours w/

VWBC
ETCPACK1.0
2.74 (fast)

Fig. 7. A case where our vertex-weighted base-color (VWBC) cal-
culation is advantageous. The H-mode in our method preserves the
shape of the block compared to the ETC1 mode selected by etcpak
1.0. However, without VWBC, the colors after compression are less
vibrant than the original colors. The VWBC approach resolves this
issue, resulting in compressed colors that are closer to the original.

4. Experimental Results 73

In this section, we will analyze how a combination of the 74

modifications introduced in Section 3.2 affects quality and 75

performance. Our approaches are built on etcpak 1.0 [13] 76

integrated the QuickETC2 patch [16], and we will compare 77

our QuickETC2-HQ method to etcpak 1.0 and ETCPACK 78

2.74 [14]. When executing ETCPACK, we used its default 79

setting, the fast mode with the perceptual error metric. 80

4.1. Experiment setup 81

For our experiments, we utilized the test image set used 82

in QuickETC2 [17, 16] (Figure 1), the set rendered by pbrt- 83

v4 [19] (Figure 2), and the two text textures in Figure 3. 84

The quality-comparison metrics we used are FLIP [26], 85

PSNR and the standard luma-based SSIM [27]. The FLIP 86

values range from 0 to 1. We used FLIP version 1.2 with 87

a default value of p=67 pixels per degree for our experi- 88

ments. We obtained PSNR and SSIM values from opencv- 89

python 4.6.0.66 and ImageMagick 7.1.1-8, respectively. 90

For the performance comparison, we used a desktop 91

computer equipped with an Intel Core i7 12700 CPU (8 92

performance-cores, 4 efficient-cores, and total 20 threads), 93

32GB DDR4-3200 RAM, a 2TB SSD, and Windows 11. 94

We measured the execution time using each encoder’s tim- 95

ing function. The time spent on the other operations, such 96

as file I/O and PNG decompression, was not included in 97

the timing values. 98

Preprint Submitted for review / Computers & Graphics (2024) 7

4.2. Comparison analysis1

Table 1 summarizes the experimental results. Our2

QuickETC2-HQ method bridges the quality gap between3

etcpak 1.0 and ETCPACK. Compared to the baseline, etc-4

pak 1.0, our approach achieved 9.5% lower FLIP and in-5

creased PSNR and SSIM values. The average FLIP value6

of QuickETC2-HQ is now comparable to that of ETC-7

PACK, with only a 0.0023 difference between them. How-8

ever, QuickETC2-HQ is two to three orders of magnitude9

faster than ETCPACK (the speed-up factor depends on10

the number of threads). Thus, QuickETC2-HQ can be11

practically used to reduce texture encoding time in a pro-12

duction build.13

Table 1. Experimental results. All the values in this table were av-
eraged over the 93 test textures. Upwards (↑) and downwards (↓)
arrows indicate that lower and higher values are better, respectively.

Quality comparison
Encoder FLIP↓ PSNR↑ SSIM↑

(mean) (dB)
etcpak 1.0 0.0476 36.98 0.954
Ours 0.0431 37.61 0.961
ETCPACK 2.74 (fast) 0.0408 38.56 0.968

Performance comparison (MPixels/s↑)
Encoder single- multi-

threading threading
etcpak 1.0 345 2266
Ours 212 1390
ETCPACK 2.74 (fast) 0.94 0.94

The reason why FLIP is more favorable to our approach14

than PSNR and SSIM is as follows. First of all, a PSNR15

value with equal weighting factors for the three RGB chan-16

nels does not properly reflect the advantage of our variable17

color weights mentioned in Section 3. For example, our18

approach decreases the mean squared error (MSE) value19

in the red channel in Sponza_curtain_diff and provides20

sharper details of the red curtain. When calculating the21

PSNR value, the increased MSE values in the green and22

blue channels offset the decreased MSE value in the red23

channel, even though the red curtain makes up most of the24

image. Similarly, although our approach resulted in a 2%25

lower SSIM value than etcpak 1.0 in the test image, this26

result is erroneous as with Nilsson and Akenine-Möller’s27

analysis [28]. Moreover, we found that SSIM often failed28

to capture the reduction in block artifacts, as described in29

the QuickETC2 paper [16]. In contrast, FLIP measures30

both color and feature differences and can accurately de-31

tect visual enhancements resulting from our additions, in-32

cluding variable color weights. Therefore, we will use FLIP33

values in further in-depth analysis.34

Figure 8 presents a detailed quality comparison of our35

approach with etcpak 1.0 and ETCPACK. In Kodim07,36

our additional Planar-mode compression improves the37

Original etcpak 1.0

0.0437 0.0428 0.0422

0.0530 0.0511 0.0458

0.0892 0.0745 0.0730

0.0721 0.0406 0.0384

0.0824 0.0635 0.0621

0.0501 0.0316 0.0310

Kodim07

(No. 7)

Lorikeet

(No. 25)

Sponza_

curtain_

diff

(No. 37)

Vase_

plant

(No. 42)

Mountains

(No. 53)

Jelly

(No. 56)

Crown

(No. 72)

0.0524 0.0521 0.0493

156,688

Iscv2_
u1_v1

(No. 58)

0.0315 0.0166 0.0162

Ours ETCPACK
2.74 (fast)

100,5700

0.0501 0.0316 0.0310

Contemporay

_bathroom

(No. 71)

0.0398 0.0392 0.0362

2600,2400

Fig. 8. Quality comparison. The number below each image is the
FLIP value (lower is better). QuickETC2-HQ alleviates various is-

sues remained in etcpak 1.0, such as aliasing, color shifts, shape dis-
tortion, color bleeding, block artifacts, blurring, posterization, etc.
Please zoom in the image to distinguish differences.

8 Preprint Submitted for review / Computers & Graphics (2024)

1.0

1.5

2.0

2.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93

QuickETC2-HQ's Encoding Time Normalized to etcpak 1.0

0.00

0.05

0.10

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93

ꟻLIP (mean) etcpak 1.0

QuickETC2-HQ

ETCPACK 2.74 (fast)

(X)

(No.)

(No.)

Fig. 9. Comparison results in each texture. Top: Performance comparison using the encoding-time overhead of QuickETC2-HQ compared to
etcpak 1.0. Bottom: Quality comparison using FLIP values between etcpak, QuickETC2-HQ, and ETCPACK. QuickETC2-HQ requires 1.6
× overhead over etcpak on average, but it suppresses etcpak’s increases in FLIP values.

quality by smoothing aliased edges and preventing color1

shifts that appeared in ETC1 blocks, as ETCPACK does.2

In Lorikeet, QuickETC2-HQ preserves the eye’s ellipse3

shape, removes the color-bled edge on the bill, and soft-4

ens blocky boundaries. In Sponza_curtain_diff, etcpak’s5

results show greenish-gold colors and blurred weaving pat-6

terns, but our approach restores them to the original.7

ETCPACK sharpens the original image. In Vase_plant,8

QuickETC2-HQ removes a significant amount of block9

artifacts between the red and black regions, although it10

does not outperform ETCPACK. In Mountains, the pos-11

terization artifact presented in etcpak 1.0 no longer ap-12

pears in our approach, and the text is more visible due to13

the preservation of the white text borders. In Jelly, our14

method dramatically improves the compression quality. In15

contrast to the others, ours prevents the black color in the16

transparent background from penetrating the pea-green17

antenna. Furthermore, our additional T-/H-mode com-18

pression removes many block artifacts with color bleed-19

ing in etcpak. ETCPACK generally handles the bound-20

ary between two different colors better than our approach.21

In Iscv2_u1_v1, ours smooths banding artifacts in etc-22

pak, similar to ETCPACK. In Crown, etcpak generates23

blocky boundaries and slightly faded colors, and ours al-24

leviates these artifacts well. The results between ours and25

ETCPACK are similar in terms of shape preservation, but26

ETCPACK expresses vivid colors in the original images27

better.28

Figure 9 presents the performance and quality compari- 29

son in each texture. The encoding time of QuickETC2-HQ 30

normalized to that of etcpak 1.0 ranges from 1.3 × to 2.7 ×, 31

with an average of 1.6 ×. Although the additional compu- 32

tations in our approach increases the encoding overhead, 33

it also improves the compression quality, as indicated by 34

the FLIP values. When the quality difference between etc- 35

pak 1.0 and ETCPACK 2.74 with the fast mode is small, 36

the impact of QuickETC2-HQ is not significant. However, 37

when etcpak 1.0 exhibits visible artifacts, our approach 38

corrects most of them, resulting in lower FLIP values that 39

are closer to those of ETCPACK. 40

4.3. Ablation study 41

For the ablation study, we selected six representative 42

images in the test set and measured the FLIP values and 43

performance on different settings in each image. The pur- 44

pose of this study is to determine how each method in- 45

troduced in Section 3.2 affects compression quality and 46

performance. We tabulate the results in Table 2. 47

Firstly, the Planar mode for solid-color blocks (a) only 48

affects results if some part of the texture contains solid- 49

color blocks. Thus, the results of Kodim07, Lorikeet, 50

Sponza_curtain_diff remained the same before and after 51

applying the method to the baseline. While this method 52

could reduce the FLIP values of RGBA textures such as 53

Vase_plant and Jelly, there was no noticeable visual im- 54

provement because errors in the transparent regions with 55

Preprint Submitted for review / Computers & Graphics (2024) 9

Table 2. Ablation study. (a), (b), (c), (d), and (e) in this table refer an addition of each method introduced in Section 3.2, respectively: (a)
forcing the Planar mode for solid-color blocks, (b) variable color weights, (c) additional T-/H-/Planar mode compression, (d) additional error
calculations, and (e) the updates for the T-/H-mode compression. The baseline is etcpak 1.0.

FLIP (mean) ↓ Encoding time (ms) ↓
Image Baseline +(a) +(b) +(c) +(d) +(e) Baseline +(a) +(b) +(c) +(d) +(e)
Kodim07 0.0437 0.0437 0.0433 0.0433 0.0428 0.0428 0.35 0.35 0.43 0.60 0.64 0.68
Lorikeet 0.0530 0.0530 0.0523 0.0521 0.0511 0.0511 0.28 0.28 0.34 0.46 0.49 0.52
Sponza_curtain_diff 0.0892 0.0892 0.0753 0.0753 0.0744 0.0745 2.3 2.3 3.6 5.9 6.0 6.4
Vase_plant 0.0721 0.0412 0.0407 0.0407 0.0406 0.0406 0.40 0.47 0.62 0.75 0.78 0.80
Jelly 0.0501 0.0333 0.0333 0.0332 0.0318 0.0316 0.16 0.19 0.28 0.31 0.33 0.34
Iscv2_u1_v1 0.0315 0.0167 0.0167 0.0166 0.0166 0.0166 14.1 15.0 21.0 21.9 22.1 22.3

the alpha value of zero were mainly reduced. On the other1

hand, the method is highly efficient for removing posteri-2

zation and banding artifacts in RGB textures, as demon-3

strated by the results for Iscv2_u1_v1.4

Secondly, the variable color weights (b) always affects5

the encoding speed because the weights need to be recalcu-6

lated for all blocks. This approach is especially effective for7

reddish or blueish textures, such as Sponza_curtain_diff.8

Thirdly, both additional T-/H-/Planar mode compres-9

sion (c) and additional error calculations (d) need to be10

used together to be effective. This is because the encode11

selector can only choose one block among several candi-12

date blocks compressed on different modes. The encoding13

overhead depends on the ratio of ETC1 to ETC2 blocks.14

Finally, the updates for T-/H-mode compression (e)15

can improve compression quality on some blocky diagonal16

edges. As a result, this method reduced the FLIP value17

in Jelly, the most problematic texture in the QuickETC218

test set. However, if there are no noticeable block arti-19

facts in a texture, the method has little to no effect on the20

compression result.21

4.4. Failure cases22

Although QuickETC2-HQ solves a number of quality is-23

sues appearing in real-time ETC2 encoding, this method24

sometimes fails to find optimal results. First, the error-25

based mode selection does not always guarantee the per-26

ceptually best quality. As shown in the first row of Fig-27

ure 10, the ETC1 blocks selected by etcpak 1.0 express28

smoothness in the pink region better than the T- or H-29

blocks selected by the other encoders. If a novel error-30

judgment method is utilized during the encoding process31

instead of MSE, we think this problem may be alleviated.32

Of course, this can be a fundamental modification in a33

block-based codec and can lead to some unexpected com-34

pression results. Thus, we would like to leave this investi-35

gation as a future research topic.36

Second, some difficult cases need an exhaustive search to37

get high-quality ETC2 compression. In the second row of38

Figure 10, the twinkling gems in Crown generate spatially-39

incoherent colors, and some of the shiny pixels are discol-40

ored after ETC2 compression, except for ETCPACK with41

the slow mode. The third row of Figure 10 shows a similar42

example. While ETCPACK with the slow mode made a 43

flawless result, the others generated color bleeding in and 44

out the black letter borders. Even additional T-/H-blocks 45

in our approach worsened the color bleeding because in- 46

ner grey texels and outer bright emerald-blue texels were 47

grouped into the same cluster due to their luma similarity. 48

Using the slow mode in ETCPACK can solve these color 49

distortion and bleeding, but this is possible at the expense 50

of compression speed; our encoder can compress each tex- 51

ture in Figure 10 within 1 ms, but ETCPACK with the 52

slow mode requires about 1 minute per texture. 53

Jelly

(No. 56) 172, 220

(16x16)

740, 948

(24x24)

448,552

(36x36)

396,552

(36x36)

Crown

(No. 72)

Original etcpak 1.0 Ours ETCPACK 2.74

Bmf_ex1

(No. 93)

(slow)(fast)

Fig. 10. Failure cases. Our approach may exacerbate block artifacts
(Jelly), distort colors (Crown), or bleed colors (Bmf_ex1) during the
additional ETC2 encoding process.

5. Conclusions and Future Work 54

In this paper, we introduced QuickETC2-HQ, a set 55

of improvements to etcpak 1.0, a state-of-the-art tex- 56

ture encoder. QuickETC2-HQ includes several techniques, 57

such as Planar-mode compression of solid-color blocks, 58

variable color weights, selective execution of additional 59

T-/H-/Planar mode compression, vertex-weighted base- 60

color calculations, and more accurate error comparisons. 61

Combining these techniques reduces compression arti- 62

facts, such as blurring, posterization, and block artifacts. 63

QuickETC2-HQ built on etcpak 1.0 provides a significant 64

speed advantage over ETCPACK 2.74 with the fast mode 65

10 Preprint Submitted for review / Computers & Graphics (2024)

while delivering comparable compression quality to that.1

Therefore, we believe QuickETC2-HQ can be an excellent2

option for mobile app developers who need high compres-3

sion quality and performance.4

There are many avenues for future work. First,5

QuickETC2-HQ has a few parameters, and more opti-6

mal parameter values for QuickETC2-HQ may exist for7

better tradeoffs between quality and performance. With8

additional consideration of masking effects [29], we will9

be able to apply different parameters to different texture10

types. Second, if we consider not only the luma (Y) space11

but also the CbCr or HSV space for compression, we will12

be able to expect more quality improvements. Third, we13

would like to extend our work to other texture encoders14

in different platforms, such as the Betsy GPU texture en-15

coder [30] and the H-ETC2 CPU-GPU hybrid encoder [31].16

We would also like to explore how to apply some of our17

methods to other texture formats, such as ASTC [9] and18

BC7 [6]. Finally, the concept of variable color weights can19

be used for other image-processing applications. Because20

global color weights for luma conversion have been widely21

used in the image-processing community, we expect our22

locally variable approach may lead to new research topics.23

Acknowledgement24

This research was supported by a 2021, 2022 Re-25

search Grant from Sangmyung University (2021-A000-26

0156, 2022-A000-0255). We appreciate the reviewers for27

their thorough reviews to improve our manuscript, and28

we also thank the authors of etcpak who have opened29

their source code to the public. Image courtesy of Ko-30

dak, Simon Fenney, Crytek, UNC GAMMA Lab, Spi-31

ral Graphics, Vokselia Spawn, Cesium, Google, fhernand32

of Sketchfab, Hamza Cheggour, Fred C. M’ule Jr, Duc33

Nguyen, Ron Fedkiw, Mareck, Martin Lubich, Yining34

Karl Li, Wenzel Jakob, Cem Yuksel, Infinite Realities,35

USC-ICT light probe image gallery, headus/Rezard, Ya-36

sutoshi Mori, Beeple, Karl Li, Guillermo M. Leal Llaguno,37

Theodore Kim, Stanford Computer Graphics Laboratory,38

Bernhard Vogl, Florent Boyer, Nolan Goodnight, Joey de39

Vries, and Warriors of the Cucumber. We plan to re-40

lease the QuickETC2-HQ patch soon at the following link:41

https://nahjaeho.github.io42

References43

[1] Žádník, J, Mäkitalo, M, Vanne, J, Jääskeläinen, P. Image and44

video coding techniques for ultra-low latency. ACM Computing45

Surveys 2022;54(11s). doi:10.1145/3512342.46

[2] Meerits, S. Real-time 3D reconstruction of dynamic scenes47

using moving least squares. Ph.D. thesis; Keio University; 2018.48

URL: https://core.ac.uk/download/pdf/161842143.pdf.49

[3] Oom, D. Real-time adaptive scalable texture compression for50

the web. Master’s thesis; Chalmers University of Technology;51

2016. URL: https://www.cse.chalmers.se/~uffe/xjobb/Daniel%52

20Oom.pdf.53

[4] Nah, JH, Choi, B, Lim, Y. Classified texture resizing for54

mobile devices. In: ACM SIGGRAPH 2018 Talks. 2018,doi:10.55

1145/3214745.3214763.56

[5] Kwak, S, Yun, J, Jeong, JY, Kim, Y, Ihm, I, Cheong, WS, 57

et al. View synthesis with sparse light field for 6DoF immer- 58

sive video. ETRI Journal 2022;44(1):24–37. doi:10.4218/etrij. 59

2021-0205. 60

[6] Microsoft, . Texture block compression in Direct3D 61

11. 2018. URL: https://docs.microsoft.com/en-us/windows/ 62

win32/direct3d11/texture-block-compression-in-direct3d-11. 63

[7] Ström, J, Akenine-Möller, T. iPACKMAN: High-quality, low- 64

complexity texture compression for mobile phones. In: Proceed- 65

ings of the ACM SIGGRAPH/EUROGRAPHICS conference 66

on Graphics Hardware. 2005, p. 63–70. doi:10.1145/1071866. 67

1071877. 68

[8] Ström, J, Pettersson, M. ETC 2: texture compression us- 69

ing invalid combinations. In: Proceedings of the ACM SIG- 70

GRAPH/EUROGRAPHICS conference on Graphics Hardware. 71

2007, p. 49–54. doi:10.2312/EGGH/EGGH07/049-054. 72

[9] Nystad, J, Lassen, A, Pomianowski, A, Ellis, S, Olson, 73

T. Adaptive scalable texture compression. In: Proceedings of 74

the ACM SIGGRAPH/EUROGRAPHICS conference on High- 75

Performance Graphics. 2012, p. 105–114. doi:10.2312/EGGH/ 76

HPG12/105-114. 77

[10] Fenney, S. Texture compression using low-frequency 78

signal modulation. In: Proceedings of the ACM SIG- 79

GRAPH/EUROGRAPHICS conference on Graphics Hardware. 80

2003, p. 84–91. URL: https://dl.acm.org/doi/10.5555/844174. 81

844187. 82

[11] Google, . Target texture compression formats in Android app 83

bundles. 2021. URL: https://developer.android.com/guide/ 84

app-bundle/asset-delivery/texture-compression. 85

[12] Unity Technologies, . Unity user manual (2022.2). 86

2022. URL: https://docs.unity3d.com/2022.2/Documentation/ 87

Manual/class-EditorManager.html. 88

[13] Taudul, B. etcpak:the fastest ETC compressor on the planet. 89

2022. URL: https://github.com/wolfpld/etcpak. 90

[14] Ericsson, . ETCPACK. 2018. URL: https://github.com/ 91

Ericsson/ETCPACK. 92

[15] Google Inc., , Blue Shift Inc., . Etc2Comp - texture to ETC2 93

compressor. 2017. URL: https://github.com/google/etc2comp. 94

[16] Nah, JH. QuickETC2: Fast ETC2 texture compression us- 95

ing luma differences. ACM Transactions on Graphics (Proceed- 96

ings of ACM SIGGRAPH Asia 2020) 2020;39(6). doi:10.1145/ 97

3414685.3417787. 98

[17] Nah, JH. QuickETC2: How to finish ETC2 compression within 99

1 ms. In: ACM SIGGRAPH 2020 Talks. 2020,doi:10.1145/ 100

3388767.3407373. 101

[18] Ström, J, Akenine-Möller, T. PACKMAN: Texture compres- 102

sion for mobile phones. In: ACM SIGGRAPH 2004 Sketches. 103

2004, p. 66. doi:10.1145/1186223.1186306. 104

[19] Pharr, M, Jakob, W, Humphreys, G. Physically Based Ren- 105

dering, fourth edition: From Theory to Implementation. The 106

MIT Press; 2023. URL: https://pbrt.org/. 107

[20] Leech, J, Lipcha, B. OpenGL© ES Version 3.0.6 (Novem- 108

ber 1, 2019). 2019. URL: https://www.khronos.org/registry/ 109

OpenGL/specs/es/3.0/es_spec_3.0.pdf. 110

[21] The Khronos® Vulkan Working Group, . Vulkan® 1.3.250 111

- a specification (with all registered vulkan extensions). 112

2023. URL: https://registry.khronos.org/vulkan/specs/1. 113

3-extensions/pdf/vkspec.pdf. 114

[22] McAnlis, C. Building a blazing fast ETC2 compres- 115

sor. 2016. URL: https://medium.com/@duhroach/ 116

building-a-blazing-fast-etc2-compressor-307f3e9aad99# 117

.acqks0pzct. 118

[23] Arm Limited, . Mali texture compression tool. 2016. 119

URL: https://developer.arm.com/tools-and-software/ 120

graphics-and-gaming/mali-texture-compression-tool/ 121

downloads/4-3. 122

[24] ITU, . BT.601 : Studio encoding parameters of digital television 123

for standard 4:3 and wide screen 16:9 aspect ratios. 2011. URL: 124

https://www.itu.int/rec/R-REC-BT.601-7-201103-I/en. 125

[25] Pettersson, M, Ström, J. Texture compression: THUMB: 126

Two hues using modified brightess. In: SIGRAD 2005 The An- 127

nual SIGRAD Conference Special Theme-Mobile Graphics. 016; 128

http://dx.doi.org/10.1145/3512342
https://core.ac.uk/download/pdf/161842143.pdf
https://www.cse.chalmers.se/~uffe/xjobb/Daniel%20Oom.pdf
https://www.cse.chalmers.se/~uffe/xjobb/Daniel%20Oom.pdf
https://www.cse.chalmers.se/~uffe/xjobb/Daniel%20Oom.pdf
http://dx.doi.org/10.1145/3214745.3214763
http://dx.doi.org/10.1145/3214745.3214763
http://dx.doi.org/10.1145/3214745.3214763
http://dx.doi.org/10.4218/etrij.2021-0205
http://dx.doi.org/10.4218/etrij.2021-0205
http://dx.doi.org/10.4218/etrij.2021-0205
https://docs.microsoft.com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11
https://docs.microsoft.com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11
https://docs.microsoft.com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11
http://dx.doi.org/10.1145/1071866.1071877
http://dx.doi.org/10.1145/1071866.1071877
http://dx.doi.org/10.1145/1071866.1071877
http://dx.doi.org/10.2312/EGGH/EGGH07/049-054
http://dx.doi.org/10.2312/EGGH/HPG12/105-114
http://dx.doi.org/10.2312/EGGH/HPG12/105-114
http://dx.doi.org/10.2312/EGGH/HPG12/105-114
https://dl.acm.org/doi/10.5555/844174.844187
https://dl.acm.org/doi/10.5555/844174.844187
https://dl.acm.org/doi/10.5555/844174.844187
https://developer.android.com/guide/app-bundle/asset-delivery/texture-compression
https://developer.android.com/guide/app-bundle/asset-delivery/texture-compression
https://developer.android.com/guide/app-bundle/asset-delivery/texture-compression
https://docs.unity3d.com/2022.2/Documentation/Manual/class-EditorManager.html
https://docs.unity3d.com/2022.2/Documentation/Manual/class-EditorManager.html
https://docs.unity3d.com/2022.2/Documentation/Manual/class-EditorManager.html
https://github.com/wolfpld/etcpak
https://github.com/Ericsson/ETCPACK
https://github.com/Ericsson/ETCPACK
https://github.com/Ericsson/ETCPACK
https://github.com/google/etc2comp
http://dx.doi.org/10.1145/3414685.3417787
http://dx.doi.org/10.1145/3414685.3417787
http://dx.doi.org/10.1145/3414685.3417787
http://dx.doi.org/10.1145/3388767.3407373
http://dx.doi.org/10.1145/3388767.3407373
http://dx.doi.org/10.1145/3388767.3407373
http://dx.doi.org/10.1145/1186223.1186306
https://pbrt.org/
https://www.khronos.org/registry/OpenGL/specs/es/3.0/es_spec_3.0.pdf
https://www.khronos.org/registry/OpenGL/specs/es/3.0/es_spec_3.0.pdf
https://www.khronos.org/registry/OpenGL/specs/es/3.0/es_spec_3.0.pdf
https://registry.khronos.org/vulkan/specs/1.3-extensions/pdf/vkspec.pdf
https://registry.khronos.org/vulkan/specs/1.3-extensions/pdf/vkspec.pdf
https://registry.khronos.org/vulkan/specs/1.3-extensions/pdf/vkspec.pdf
https://medium.com/@duhroach/building-a-blazing-fast-etc2-compressor-307f3e9aad99#.acqks0pzct
https://medium.com/@duhroach/building-a-blazing-fast-etc2-compressor-307f3e9aad99#.acqks0pzct
https://medium.com/@duhroach/building-a-blazing-fast-etc2-compressor-307f3e9aad99#.acqks0pzct
https://medium.com/@duhroach/building-a-blazing-fast-etc2-compressor-307f3e9aad99#.acqks0pzct
https://medium.com/@duhroach/building-a-blazing-fast-etc2-compressor-307f3e9aad99#.acqks0pzct
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-texture-compression-tool/downloads/4-3
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-texture-compression-tool/downloads/4-3
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-texture-compression-tool/downloads/4-3
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-texture-compression-tool/downloads/4-3
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-texture-compression-tool/downloads/4-3
https://www.itu.int/rec/R-REC-BT.601-7-201103-I/en

Preprint Submitted for review / Computers & Graphics (2024) 11

Linköping University Electronic Press; 2005, p. 7–12. URL:1

https://ep.liu.se/ecp/016/002/ecp01602.pdf.2

[26] Andersson, P, Nilsson, J, Akenine-Möller, T, Oskarsson, M,3

Åströmand Mark D. Fairchild, K. FLIP: A difference evaluator4

for alternating images. Proceedings of the ACM on Computer5

Graphics and Interactive Techniques (HPG 2020) 2020;3(2).6

doi:10.1145/3406183.7

[27] Wang, Z, Bovik, AC, Sheikh, HR, Simoncelli, EP. Image8

quality assessment: from error visibility to structural similar-9

ity. IEEE Transactions on Image Processing 2004;13(4):600–10

612. doi:10.1109/TIP.2003.819861.11

[28] Nilsson, J, Akenine-Möller, T. Understanding SSIM. ArXiv12

e-prints 2020;doi:10.48550/arXiv.2006.13846].13

[29] Griffin, W, Olano, M. Evaluating texture compression mask-14

ing effects using objective image quality assessment metrics.15

IEEE Transactions on Visualization and Computer Graphics16

2015;21(8):970–979. doi:10.1109/TVCG.2015.2429576.17

[30] Goldberg, MN. Betsy GPU compressor. 2022. URL: https:18

//github.com/darksylinc/betsy.19

[31] Lee, H, Nah, J. H-ETC2: Design of a CPU-GPU hybrid20

ETC2 encoder. Computer Graphics Forum (Pacific Graphics21

2023) 2023;42(7).22

https://ep.liu.se/ecp/016/002/ecp01602.pdf
http://dx.doi.org/10.1145/3406183
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.48550/arXiv.2006.13846]
http://dx.doi.org/10.1109/TVCG.2015.2429576
https://github.com/darksylinc/betsy
https://github.com/darksylinc/betsy
https://github.com/darksylinc/betsy

	Introduction
	Background
	Our Approach
	Analysis of etcpak's compression artifacts
	Our modifications to minimize the compression artifacts

	Experimental Results
	Experiment setup
	Comparison analysis
	Ablation study
	Failure cases

	Conclusions and Future Work

