
SAT0: Surface-Area Traversal
Order for Ray Tracing
SEP 13, 2013

JAE-HO NAH

1

Two Ray Types in Ray Tracing
• Radiance ray
• For primary visibility, reflection, refraction, etc.

• Shadow ray (occlusion ray)
• For hard and soft shadows, ambient occlusion,

etc.

2

Traversal of a Radiance Ray

• Need for the closest hit point

• Front-to-back traversal order is ideal
3

Traversal of a Shadow Ray

• Any hit point is possible

• Front-to-back traversal order may not be ideal
4

Surface-Area Heuristic
[Goldsmith and Salmon 1987]

• Standard tree construction method

• Greedy SAH construction determines the optimal split position
by using the following equation:

5

Expected
cost of the

voxel V

Traversal
cost

Inter-
section

cost

Right
node’s

cost

Left
node’s

cost

SA (v) = surface area of V
TV = # of tris in V

Surface-Area Heuristic
[Goldsmith and Salmon 1987]

• Standard tree construction method

• Greedy SAH construction determines the optimal split position
by using the following equation:

• Assumption: the probability of a node being pierced by rays is
proportional to the node’s surface area with finite random rays`

6

SA (v) = surface area of V
TV = # of tris in V

Surface-Area Heuristic
[Goldsmith and Salmon 1987]

• Example

7

T0

T1

T2
T3

Best split plane with
the lowest cost

State-of-the-Art
Shadow-Ray Traversal Order

• RTSAH (Ray Termination Surface-Area Heuristic)
[Ize and Hansen 2011]
• Calculates the expected traversal cost of each child node (preprocessing)

• The cheaper child node is first visited in ray traversal

•Up to 2X speedup

8

State-of-the-Art
Shadow-Ray Traversal Order

• SRDH (Shadow Ray Distribution Heuristic)
[Feltman et al. 2012]
• Shadow-ray-specialized BVH construction method

• Traversal results of a small representative set of rays are used
for both BVH construction and traversal-order determination

• Frequent occluders are located in upper-level nodes and are
first visited

• 22~56% less traversal steps than SAH-constructed trees

9

State-of-the-Art
Shadow-Ray Traversal Order

• Limitation of RTSAH and SRDH: preprocessing cost
• RTSAH: ~51ms (fast approximate RTSAH), ~5.8s (RTSAH)

• SRDH: ~20s

•May not be suitable for dynamic scenes

• How can we quickly determine efficient traversal order?

10

Surface-Area Traversal Order

• Surface-area traversal order (SATO)
•To determine TO, simply use the surface area (SA)

• Two major goals
• To minimize the traversal order (TO) calculation time
• To quickly find a large occluder for shadow ray tracing

• Three sub-metrics of SATO
•NodeSATO: uses each node’s SA
• PrimSATO: uses average or maximum SA of each primitive in a node
• PrimNumTO: uses primitive numbers

11

Example of Traversal Order

• Front-to-back
•N0 N2N4T2T3N1T0

• NodeSATO and PrimSATO
• N0 N1T0
• N1 is first visited instead of N2

(a) kd-tree, (b) BVH, (c) tree representation

12

Why does SATO work?

• Three assumptions will be introduced for

: PrimSATO, NodeSATO in kd-trees, and NodeSATO in BVHs

• We will focus on NodeSATO, but the relationship between
PrimSATO and NodeSATO is important to verify NodeSATO

13

First Assumption for PrimSATO

• Large primitives are usually located
in the upper-level nodes in a tree,

T0

T1 T2 T3

N0

N1 N2

N3 N4

so intersecting with a large primitive
first can result in early termination
of a shadow ray.

• This assumption is based on the
character of SAH-constructed trees
• The SAH keep larger primitives near the root

14

Second Assumption for NodeSATO/PrimNumTO
in Kd-trees

• In SAH kd-trees, the child node
with the larger SA has a higher
probability of enclosing larger
primitives

• In many cases, the SAH costs of
each node (a) (b) are comparable
• Larger SA ≈ less # of prims

T0

T1

T2
T3

CV(p) ≈ SA (VL) ∙ TL + SA(VR) ∙TR
(a) (b)

p

 Possibility of large empty spaces or large prims

15

Third Assumption for NodeSATO in BVHs

• In BVHs, the child node with the
larger SA has a higher probability
of enclosing larger primitives

• The BV of a parent BVH node
includes the BVs of its primitives
• Larger SA ≈ larger prims

T1

T2
T3

p

16

T0

PrimSATO

17

• Psuedo code in tree construction
find the optimal split plane

if (optimal split plane exists)

make an inner node

calculate the avg or max SA value of prims in each child node

compare each child’s avg or max SA value

set isLeftCheaper of the node

else

make a leaf node

NodeSATO

18

• Psuedo code in tree construction
find the optimal split plane

if (optimal split plane exists)

make an inner node

compare each child node’s SA

set isLeftCheaper of the node

else

make a leaf node

NodeSATO

19

• NodeSATO can be used with various BVH update methods

• Selective SATO update is possible with the tree-rotation
algorithm [Kopta et al. 2012]

• Pseudo code in tree rotation
if (a rotation can decrease the SAH cost)

do a rotation

compare the SAs of the rotated inner nodes

set isLeftCheaper of the nodes

PrimNumTO

20

• Psuedo code in tree construction
find the optimal split plane

if (optimal split plane exists)

make an inner node

compare primitive numbers of each child node

set isLeftCheaper of the node

else

make a leaf node

SATO Traversal

21

• Same as the RTSAH traversal
• refer to the predefined isLeftCheaper flag

• Psuedo code
if (a shadow ray intersects with an inner node)

front_son = node.isLeftCheaper ? 0 : 1;

do an intersection test with node.child+front_son

do an intersection test with node.child+1-front_son

Experimental Setup

22

• Intel 3.4GHz Core i7 with 8GB RAM (w/ hyperthreading)

• Manta interactive ray tracer

• Traversal algorithm
• 8x8 packetized BVH traversal [Wald et al. 2007]
• Single-ray BVH traversal
• Single-ray kd-tree traversal

• Traversal order
• Front-to-back
• Random

• PrimSATOAVG

• PrimSATOMAX

• RTSAH

•Approximate RTSAH

•NodeSATO

• PrimNumTO

Static Benchmark Scenes

23

• Mad science (80k tris)

• Carnival (446k tris)

• Bedroom (361k tris)

• Sponza (66k tris)

• Ship (4k tris)

• Shadow overlap (2M tris)

Results in Static Scenes

24

• Traversal order calculation time (w/ a single thread)
• BVH: NodeSATO/PrimNumTO (~3ms), PrimSATO (~154ms)

• Kd-tree: NodeSATO/PrimNumTO (~3ms), PrimSATO (~106ms)

Results in Static Scenes

25

• Rendering performance improvements (in average)

0

10

20

30

40

50

60

Front-to-back Random RTSAH Approx
RTSAH

PrimSATOavg PrimSATOmax NodeSATO PrimNumTO

Packet BVH Single-ray BVH Single-ray kd-tree

(%)

• PrimSATO – up to 8% higher speedup than RTSAH

• NodeSATO/PrimNumTO – similar speedup compared to RTSAH

Results in Static Scenes

26

• Traversal-order similarity between NodeSATO and others

Dynamic Benchmark Setup

27

• BVH update algorithm
• BV refitting [Wald et al. 2007] + tree rotation [Kopta et al. 2012]

• BVH traversal algorithm
• 8x8 packetized BVH traversal [Wald et al. 2007]

• 1024x768 resolution

• Soft shadows (4 samples per shading point)

Results in Dynamic Scenes

0

10

20

30

40

50

front to back random RTSAH approx RTSAH NodeSATO NodeSATO
(selective)

Funnel (18K triangles)

BVH update time TO calculation time render time

28

(ms)

<0.1ms TO
calc time

(8 threads)

TO calc time >
reduced render time

Results in Dynamic Scenes

0

50

100

150

200

250

300

front to back random RTSAH approx RTSAH NodeSATO NodeSATO
(selective)

Fairy (174K triangles)

BVH update time TO calculation time render time

29

(ms)

<0.1ms TO
calc time

(8 threads)

TO calc time >
reduced render time

Results in Dynamic Scenes

0

200

400

600

800

1000

1200

front to back random RTSAH approx RTSAH NodeSATO NodeSATO
(selective)

Lion (1.6M triangles)

BVH update time TO calculation time render time

30

(ms)

0.1ms TO
calc time

(8 threads)

TO calc time >>>
reduced render time

Results in Dynamic Scenes

0
1000
2000
3000
4000
5000
6000
7000

front to back random RTSAH approx RTSAH NodeSATO NodeSATO
(selective)

Crowd Simulation (10.9M triangles)

BVH update time TO calculation time render time

31

(ms)

1.6ms TO
calc time

(8 threads)

TO calc time >>>
reduced render time

Limitations

32

• SATO does not guarantee performance improvements
• Only accelerate “occluded shadow” rays

• Assume SAH-constructed trees (NodeSATO/PrimNumTO)

• Equal scene primitive sizes no benefits

Conclusions and Future Work

33

• NodeSATO: very fast and simple traversal-order heuristic
•Give traversal priority to the node with larger SA
•Negligible overheads very suitable for dynamic scenes
•Very simple implementation
• Similar speedup in static scenes compared to RTSAH

• Future work: combination with other methods
• Static SRDH-constructed tree + dynamic SATO update tree
• SATO with lazy build [Djeu et al. 2011]

Questions?

34

