

A Shadow Culling Algorithm for Interactive Ray Tracing

Jae-ho Nah† Kyung-ho Lee‡ Woo-chan Park Tack-don Han†

†Yonsei Unverisity ‡Institut Pasteur Korea Sejong University

ABSTRACT

We present a novel shadow culling algorithm in ray tracing. For
interactive ray tracing, our approach exploits frame-to-frame
coherence instead of preprocessing of building shadow data. In
this algorithm, shadow results are stored to each primitive and
used in the next frames. We present a novel occlusion testing
method to guarantee exact shadows. In experiments with BART
scenes, our algorithm shows 7-19 percent reduction in cost of
traversal and 9-24 percent reduction in cost of intersection test.
KEYWORDS: Ray tracing, real-time rendering, shadow algorithm,
INDEX TERMS: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism – Ray tracing

1 INTRODUCTION

According to Whitted-style ray tracing algorithm, the number
of shadow rays is relative to the number of light sources. For
example, if there are nine point light sources, the rate of shadow
rays is 90 percent because a non-shadow ray (primary ray,
reflection ray, and refraction ray) generates nine shadow rays.
Thus, efficient shadow processing is essential for ray tracing.

To reduce the shadow calculation, there are several
preprocessing approaches. The light buffer [1] stores object list to
grid light structure. Voxel occlusion test [2] stores shadow results
to grid acceleration structure. Local illumination environments
(LIEs) [3] caches geometric and direct illumination to octree
acceleration structure. Lightcuts [4] is binary light tree of clusters
to cut unnecessary lighting. These preprocessing methods are only
useful in static scenes because they need to update the shadow
results from scratch every frame in dynamic scenes. Haines et al.
also presented shadow caching which exploits object coherence in
[1]. This algorithm can be applied irrespective of preprocessing,
but it is penalized in incoherent shadow rays and non-occluded
shadow rays. [5]

In this paper, we propose a novel shadow culling algorithm
which utilizes frame-to-frame coherence for interactive ray
tracing. For the utilization, shadow results are accumulated on
each primitive to reduce redundant shadow tracing in the next
frame. If shadows are changed because of dynamic objects, the
shadow results are partially updated in the only related primitives.

Updating shadow results is valid if and only if the primitive is
not occluded on the view point because the shadow results on
occluded area don't be calculated. To detect the occlusion, we also
present a novel occlusion testing technique which needs simple
comparison between hit primitives on adjacent pixels.

Our algorithm offers the following benefits. First, our algorithm
efficiently reduces the cost of shadow rendering. Second, our
algorithm doesn’t need preprocessing. Third, our algorithm is easy
to implement and it has small overhead.

2 PROPOSED SHADOW CULLING ALGORITHM

2.1 Algorithm Flow

Figure 1 is the overall processing flow of our algorithm. It is
similar to traditional ray tracing algorithm except some
modifications. First, the occlusion testing stage is added to carries
out occlusion testing to decide occlusion modes on partially
occluded primitives. Next, the shadow testing stage is modified to
reduce redundant calculation. After the shadow testing, the results
set the shadow mode on the hit primitive. Finally, the occlusion
mode setting stage decides occlusion modes on fully rendered
primitives.

 Start of frame

Figure 1: The overall flow of our shadow culling algorithm

2.2 Required Additional Information

Each primitive needs the additional information to reuse
shadow results: an occlusion mode (2bit), a shadow mode
(2bit*light sources), the number of current rendered pixel (1
integer), and the highest number of rendered pixel (1 integer).
Figure 2 represents the occlusion mode and the shadow mode.
The occlusion mode and the shadow mode need only a few bits,
so they can be merged to a 32bit integer in less than ten lights.

Occlusion mode (value) Shadow mode (value)
 INIT(00) INIT(00)

PARTIALLY_
OCCLUDED(01)

FULL_SHADOW
(01)

FULLY_
RENDERED(10)

NON_SHADOW
(10)

DYNAMIC(11)

PARTIAL_
SHADOW(11)

Figure 2: (Left) four occlusion modes (Right) four shadow modes

2.3 Occlusion Testing

In this section, we propose a novel occlusion testing algorithm.
The occlusion testing method is simple. It compares primitives
between the current pixel and two reference pixels. If the
primitives are different, an intersection test is executed between
the current primary ray and the primitive on the reference pixel. If
the hit result is true, the primitive on the reference pixel is

E-mail : jhnah@msl.yonsei.ac.kr

Tracing primary rays

Occlusion testing

Shadow testing

Shadow mode setting

Tracing secondary rays

Occlusion mode setting

 A Modified stage

Added stages

End of frame

partially occluded by the primitive on the current pixel. If the
current pixel is located at the edge of screen, the primitive on the
current pixel has always the PARTIALLY_OCCLUDED mode
because the primitive is clipped by the screen.

Figure 3: An example of the occlusion test – if the current rendering
pixel is 5, two occlusion testing are executed about the pixel 4(the
left pixel of 5) and the pixel 2(the upper pixel of 5). After the testing,
the renderer detects that the faint blue triangle is occluded by the
dark blue triangle.

2.4 Shadow Testing

The shadow testing stage detects shadows on the current
shadow ray, and also decides whether shadow culling can be
executed or not. If a primitive has FULLY_RENDERED mode
and FULL_SHADOW mode, the shadow tracing is skipped. If the
shadow mode is NON_SHADOW, other dynamic objects could
make a shadow. In this case, the current shadow ray should trace
dynamic objects. If the node hasn’t dynamic objects, traversal will
be stopped. Because of this feature, the acceleration structure
construction from scene graph [6] is very suitable in our algorithm.
In other words, our algorithm has best efficiency when split
planes are object boundaries instead of primitive boundaries.

2.5 Shadow Mode Setting

As we mentioned in Section 2.2, the size of shadow mode is
two bit. The first bit means shadow and the second bit means non-
shadow. Therefore, shadow mode setting can be executed with a
simple OR operation. If a primitive has shadow partially, the
shadow mode of the primitive become 11(PARTIAL_SHADOW)
after an OR operation between 01(FULL_SHADOW) and
10(NON_SHADOW).

2.6 Occlusion Mode Setting

This stage set occlusion modes of rendered primitives before
the end of frame. If the occlusion mode of a primitive is INIT at
that time, the mode is changed to FULLY_RENDERED. It means
that the primitive doesn’t occluded by any other primitives. On
the contrary, if the occlusion mode of a primitive is
FULLY_RENDERED and the number of current rendered pixel is
more than the quadruple of the highest number of rendered pixel,
the occlusion mode is changed to INIT and the highest number of
rendered pixel is updated. This processing prevents shadow
artefacts on zoom-in as figure 4.

Figure 4: Upper line images are original primitives, and lower line
images are projected images on pixels. After change the view point,
invisible shadow on the primitive could be visible. Our algorithm
solves this consistency problem on the occlusion mode setting.

3 EXPERIMENT RESULTS

We implemented a Whitted-style ray tracer to verify our
algorithm. The acceleration structure is kd-tree which has a split
criterion between dynamic and static objects using scene graph.

We selected the BART scenes (Kitchen and Robot) for
benchmark. The Kitchen scene is composed of 100K static
triangles and 10K dynamic triangles. The Robot scene is
composed of 10K static triangles and 60K dynamic triangles. The
benchmark was executed on 512×512 resolution and maximum
recursion depth was 10. The experiment metric is the number of
traversal and intersection test.

Table 1 represents cost reduction results. Our algorithm is more
efficient in the Kitchen scene than the Robot scene. The reason is
that the former is static object-centred but the latter is dynamic
object-centred. Table 1 also includes the overhead of our
algorithm. Our algorithm needs three additional stages as figure 1.
The shadow mode setting and the occlusion mode setting require
only simple calculation but occlusion test requires additional ray-
primitive intersection tests. Thus, we measured this occlusion test
overhead. According to experiment results, the overhead is very
low because additional tests only occur on the primitive
boundaries when primary rays are traced.

Scene

Cost reduction
ratio of shadow
ray traversal

Cost reduction
ratio of shadow
ray/primitive
intersection test

Additional
intersection
tests for
occlusion
testing Avg. Max. Avg. Max.

BART
Kitchen

19.8% 59.5%
(20th
frame)

24.5% 59.8%
(19th
frame)

0.173
per pixel

BART
Robot

7.4% 19.5%
(31th
frame)

9.5% 29.6%
(41th
frame)

0.149
per pixel

Table 1: Experiment results in BART kitchen and robot scenes

4 CONCLUSIONS AND FUTURE WORKS

We presented a novel shadow culling algorithm for interactive
ray tracing. This algorithm accumulates shadow results and reuses
the results to exploit frame to frame coherence. Thus, it doesn’t
need preprocessing in contrast priori works. Our algorithm has
some overhead for occlusion testing, but it is quite low.

Many other acceleration algorithms can be mixed with our
algorithm, and it would make synergy effects. Shadow caching
would effectively reduce the shadow calculation of partially
occluded primitives, and triangle subdivision would reduce the
ratio of primitives which have partial shadows. These hybrid
approaches will be examined in a future publication.

REFERENCES

[1] E.A.Haines and D.P.Greenberg, The light buffer: A shadow testing
accelerator. IEEE Computer Graphics and Applications, vol. 6, no. 9,
pages 6-16, Sep 1986.

[2] A.Woo and J.Amanatides, Voxel occlusion testing: A shadow
determination accelerator for ray tracing. Proceedings of Graphics
Interface ’90, pages 213-226, May 1990.

[3] S.Fernandez, K.Bala, and D.P.Greenberg, Local illumination
environments for direct lighting acceleration. Proeedings of 13th
Eurographics workshop on Rendering, pages 7-14, June 2002.

[4] B.Walter, S.Fernandez, A.Arbree, K.Bala, M.Donikian, and
D.P.Greenberg, Lightcuts: A scalable approach to illumination. ACM
Transaction on Graphics, vol.24, no.3, pages 1098-1107, Aug 2005.

[5] I.Wald, Realtime Ray Tracing and Interactive Global Illumination,
Ph.d thesis, Sarrland University, 2004.

[6] W.Hunt, W.R.Mark, and D.S.Fussel, Fast and lazy build of
acceleration structures from scene hierarchies. Proceedings of IEEE/
EG symposium on interactive ray tracing, pages 47-54. Sep 2007.

1 2 3

4 5

After change
the view point

.

