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Abstract

This paper proposes a new group-based acceleration data structure called gkDtree

for interactive ray tracing of dynamic scenes. The main idea of the gkDtree is

to construct the acceleration structure with a multi-level hierarchy, and to inte-

grate a parallelization approach to result in a faster update and a more efficient

tree traversal. A gkDtree can be viewed as a set of kd-trees, each of which

is a local acceleration structure corresponding to a group. For a gkDtree, a

scene is divided into several groups based on a scene graph. The local acceler-

ation structure of each group involving only dynamic primitives is rebuilt. To

achieve higher parallelization, dependencies among groups in different levels are

removed before rebuilding occurs in parallel. To enhance the scalability of paral-

lelization, a simple and fast load-balancing scheme is introduced. Furthermore,

we applied a variety of accurate SAH (surface area heuristic) algorithms into

tree generation for both static and dynamic groups. The experimental results

show that a gkDtree has a real-time update performance. It has an update per-

formance that is up to 166 times faster than a kd-tree for our test scenes in an

six-core hardware system environment. Furthermore, the results also show that

tree traversal performance of a gkDtree is competitive with that of a kd-tree.

1. Introduction

Ray tracing is a rendering technique that generates photo-realistic images

by tracing the photons that emanate from light sources. However, ray tracing

requires enormous computations for simulating the reflections and refractions of

the photons in 3D scenes. Hence it has mainly been used in off-line rendering.

Recently, real-time ray tracing has received close attention from researchers

owing to faster hardware and algorithmic improvements.
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Ray tracing can be accelerated by the use of data structures such as kd-trees,

octrees, grids, and bounding volume hierarchies (BVHs). An acceleration struc-

ture enhances the rendering performance by reducing the number of intersection

tests between rays and primitives being rendered.

Since the primitives in dynamic scenes may move their positions from frame

to frame, an acceleration structure should be updated every frame. Therefore,

building and updating an acceleration structure greatly influences the overall

performance of an interactive ray tracer for dynamic scenes. Due to this fact,

various acceleration structures have been extensively studied. Among a wide

variety of interactive ray tracing approaches [1], the multi-level hierarchy and

parallelization approaches are of most concern in this paper, since they are used

for our acceleration structure.

In the multi-level hierarchy approach, primitives in a specific scene are di-

vided into multiple groups, each of which has the same linear transformation

[2]. This method provides a fast update for the scenes by updating only those

groups that contain moving objects and inversely transforming the rays rather

than the objects. However, the update performance cannot be improved if de-

formable primitives exist in the scenes. In addition, the rendering performance

deteriorates due to the inverse transformation of the rays [1].

Furthermore, there have been studies of parallelization approaches to process

the building and updating of acceleration structures on multi-core CPUs [3, 4, 5]

and GPUs [6, 7, 8, 9]. These approaches obtain enough independent threads

by dividing the entire tree into subtrees. For this upper level tree construction,

an exact surface area heuristic (SAH) [5] or alternative subdivision heuristics

[3, 4, 6, 7] are used. The first provides no tree quality degradation, but spends

an inordinate amount of time on tree construction. The latter is performed

more quickly, but causes tree quality degradation.

In this paper, we propose a group-based acceleration data structure, called

gkDtree. The proposed data structure is a set of kd-trees that incorporate both

the multi-level hierarchy and parallelization approaches. For a gkDtree, a scene

is partitioned hierarchically using its scene graph. Only the local acceleration

structure of a group that contains dynamic primitives is rebuilt. Each group in

a gkDtree is organized hierarchically as well. Therefore, with the exception of

the leaf groups in a group hierarchy, split candidates decrease from primitive

boundaries to group node boundaries. This is similar to [10]. This group-based

SAH evaluation is faster than the exact SAH evaluation [5, 11, 12].

In the multi-level hierarchy, it can be difficult to achieve a high level of
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parallelization during the rebuilding of the tree. The reason is that the nodes

in the higher level of the tree can be updated after the nodes in the lower level

of the tree have been updated. To resolve this problem, a gkDtree performs the

geometry update stage before the rebuilding of the local acceleration structure

of a group. In the geometry update stage, the axis-aligned bounding boxes

(AABBs) of the animated primitives and groups are only updated in a bottom-

up fashion without rebuilding the local acceleration structure. Such updates

eliminate the dependencies among the nodes in the tree. Furthermore, a gkDtree

performs load-balancing for efficient parallelization. This scheme distributes the

groups to threads, level by level, from the bottom-up in a round-robin fashion.

This scene graph-based parallelization approach provides higher tree quality

than the object median-based parallelization [3].

Through the aforementioned schemes, a gkDtree exhibits an update perfor-

mance that is up to 166 times faster update performance than a kd-tree [13]

for the BART test scenes [14] and the Conference scene in a six-core hardware

system environment (Figure 1). Even comparing with [3] and [8], the update

performance of a gkDtree is higher on the BART test scenes than that of [3] and

[8]. Furthermore, the experimental results also indicate that the tree traversal

performance of a gkDtree is competitive with that of a kd-tree. We can obtain

these results by applying different SAH algorithms to tree generation for both

static and dynamic groups. We use three axes for exact SAH calculations with

small leaf sizes in static groups, while we use the longest axis for fast SAH

calculations with small large sizes in dynamic groups.

The remainder of this paper is organized as follows. Section 2 describes the

related work regarding this study and Section 3 explains the detailed concepts

of a gkDtree. Section 4 illustrates the results of our experiments. Finally, in

Section 5 conclusions are drawn.

Figure 1: The scenes rendered by the proposed acceleration structure: BART-Kitchen,
BART-Robot, BART-Museum, and Conference.
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2. Related Work

There have been great efforts to increase the speed of interactive ray tracing

for dynamic scenes. In this section, we review scene update, parallel update,

and tree construction strategies.

2.1. Scene Update Strategy

Acceleration structures should be adjusted for moving objects in dynamic

scenes. They can be rebuilt from scratch for each frame [3, 4, 15, 11]. In

this case, precomputed triangle clusters can be used to reduce the input size

as shown in [16]. Other researchers [17, 18, 19] afford partial updates for the

portions that require changes due to animation in successive frames. And lastly,

if the scenes are almost static, an acceleration structure for the static geometry

can be constructed before rendering and is reused for successive frames [2, 20].

The rebuild approach generates high quality data structures and exhibits

excellent efficiency when a large number of intersection tests are performed

and the size of the scene data is relatively small. However, the static update

approach is only able to show higher tree update performance for the scenes that

do not contain any deformable primitives. The update approach, in contrast,

can be used in the scenes containing deformable primitives, providing better

tree update performance than the rebuild approach in general.

There are several disadvantages to these approaches. First, the rebuild ap-

proach proves to have inferior rebuild (or update) performance, since it must

rebuild the structure for each frame in the entire scene. For partial rebuild,

Arauna [21] divided the entire tree into static parts and dynamic parts. How-

ever, this increases the number of traversal steps, since it always traverses two

divided trees. Second, the static approach undergoes performance degradation

in the intersection tests. Its overall performance can deteriorate more rapidly

as the number of rays increases, for generating high quality images. Moreover,

it suffers from further performance degradation if the scenes contain a large

number of deformable primitives. Third, in the update approach, the qual-

ity of the data structure is continuously degraded as updates are performed,

consequently resulting in slower intersection test performance. To relieve such

degradation, there are studies [22, 23] which have combined the update and

rebuild approaches.
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2.2. Parallel Update

On multi-core CPUs, previous researchers have proposed the parallel con-

struction of grids [24], kd-trees [3, 5, 25, 26], and BVHs [4], respectively. Others

have exploited graphics processing units (GPUs) for the parallel construction of

grids [27, 28], kd-trees [6, 8], and BVHs [7, 9], respectively. We provide a brief

overview of these parallel methods in this section.

First of all, we will introduce CPU tree build methods. The SAH [12], used in

tree building in general, is usually recursively performed in a top-down fashion.

Thus, early parallel tree build algorithms have shown lower scalability [25, 26].

In contrast, [3] has developed a highly parallel kd-tree construction algorithm

that overcomes the limits shown in [25, 26]. This algorithm uses the object me-

dian to divide a tree into subtrees in order to achieve scalability. However, this

decomposition may impair the rendering performance due to tree quality degra-

dation. Recently, [5] presented a novel parallel decomposition method based on

the exact SAH [11]. Although this method constructs the same tree as [11], its

tree build performance is not superior to [3]. In the case of BVHs, two meth-

ods for parallel BVH construction were first presented by [4]. One method is a

combination of vertical parallelization using partitioned subtrees and horizontal

parallelization using multiple threads working in the same binning step. The

other method uses partitioned sub-domains made by uniform grids.

Next, GPU tree construction methods were introduced recently. [6] proposed

a kd-tree build algorithm using programmable shaders in GPU. This algorithm

requires a considerably larger amount of memory than CPU-based approaches,

since it builds trees in the breath-first order to increase the scalability of shaders.

The GPU memory size also limits tree depth. To relieve this problem, [8] pro-

posed a partial breadth-first search construction, and reduced the size of the

working set. In the case of BVHs, [7] proposed a hybrid BVH construction al-

gorithm on GPU, which incorporates LBVH (linear bounding volume hierarchy)

construction using Morton codes and an SAH-based BVH build.

Finally, parallel grid construction has been studied for ray tracing of dynamic

scenes. Various parallel methods for construction of uniform grids were studied

by [24], and scalability was measured on a 16-core machine. GPU parallelization

of uniform grid construction and two-level grid construction were presented

by [27] and [28], respectively. Although these methods provide fast update

performance, the grids are less efficient for traversal and intersection tests than

tree structures [1].
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2.3. Tree Construction Strategy

The SAH [12, 29], has been widely used for tree construction. Although the

SAH provides high quality trees, the original SAH requires O(nlog2n) computa-

tion costs. [11] presented an O(nlogn) kd-tree construction method using initial

sorting and sort free sweeping.

Several researchers [3, 15, 26] have applied O(n) binned radix sort to SAH

approximation. This method greatly reduces the SAH computation cost, but

it makes rendering performance degradation due to the selection of split planes

by sampling.

Finally, hierarchies also have been utilized to reduce the split plane candi-

dates. The Razor system [10, 30] constructs an object-based, multi-level hier-

archy, using scene graph hierarchies and performing lazy updates in local ac-

celeration structures. Hierarchical linear bounding volume hierarchy (HLBVH)

[9], an improved version of the original LBVH [7], has presented a node hierar-

chy emission procedure. This method generates treelet hierarchies from sorted

Morton codes to reduce global memory traffic on GPUs.

3. gkDtree

In this section, we describe details of the gkDtree. First, the construction

method of the initial gkDtree is explained. We then show how to update gkDtree

according to the animation. Finally, the parallel scheme for building local ac-

celeration structures of groups and the gkDtree traversal method are provided.

3.1. Initial gkDtree Construction

The construction of the gkDtree consists of two steps. In the first step, a

group hierarchy is generated from a hierarchical animation data structure (e.g.,

a scene graph). Then, a local acceleration structure for each node in the group

hierarchy is built.

Before describing the process of group hierarchy construction, we need to

define a group. In a gkDtree, a group is treated as a primitive. A group has

the following member variables. First, like a kd-tree, a group has three pointers

to the node data, the primitive list, and the primitive data. However, there is

a difference between a gkDtree and a kd-tree. In a gkDtree, a group’s pointers

reference its local data, while the pointers in kd-tree indicate global data. In

a gkDtree, this local data is used for the construction of the local acceleration

structure. Second, a group has the update flag that indicates whether the
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group is static or dynamic. Third, a group has transform matrices. If a group

is dynamic, these matrices are updated for each frame. Fourth, a group should

know which level it is on within the group hierarchy. Finally, a group contains

the AABB that includes the AABBs of the group’s primitives.

The process of group hierarchy construction is simple, because we can easily

construct a group hierarchy from a scene graph. In other words, a group hi-

erarchy is basically similar to a scene graph hierarchy. Therefore, to construct

a group hierarchy, we should recursively traverse a scene graph. Nevertheless,

there are a couple of differences between a group hierarchy and a scene graph

hierarchy. First, if a scene graph node has only one child, the parent scene graph

node and the child node are merged into a group node for faster traversal. This

case occurs when multiple transforms (e.g., translation, rotation, scaling, and

matrix operations) are performed consecutively. If we don’t apply this scheme,

redundant ray-AABB intersection tests are performed, since the parent and its

child group node both have the same AABBs in this case. Second, if a scene

graph node is static and it is at a level 1 (next to the root), we create a group

node. That is, even though static objects consist of multi-level hierarchies, we

only construct a two-level hierarchy. Because static objects are not updated

after the first frame, multi-level hierarchies are not necessary.

After a group hierarchy has been created, each local acceleration structure

is constructed as a kd-tree with SAH. In general, kd-trees have been known to

provide optimal rendering efficiency [31]. For local acceleration structures in a

gKDtree, various data structures and algorithms (e.g., BVHs, grids, or binning

algorithms) can be employed, instead of SAH-based kd-trees.

The process of local kd-tree construction is similar to the general kd-tree

construction algorithm except for some optimization techniques. First, if a local

kd-tree includes group nodes (the case of the upper-level local kd-tree), a large

leaf size may degrade the overall performance due to excessive traversal of local

kd-trees. Also, if a group nodes includes a few primitives (e.g., less than 16), a

local kd-tree would be flattened. Thus, a smaller leaf size is suitable for these two

cases. Second, we can use different tree build strategies to static and dynamic

local trees, similar to [20]. Because static local trees are not updated after the

first frame, the tree construction time in preprocessing is less important than

the tree update time in the case of dynamic scenes. Therefore, more accurate

SAH and a small leaf size can be used for static trees, even though these two

settings require longer construction time. On the other hand, less accurate SAH

and a large leaf size can be used for dynamic trees in order to accelerate tree

7



Figure 2: Wire framed gkDtree object hierarchy for the BART Robot scene. In higher
level local kd-trees, these multi-level object boundaries are used for SAH calculation
instead of actual primtives.

update. Details of our tree construction parameters will be described in Section

4.

Primitive sorting and SAH calculations in a gkDtree are more rapidly per-

formed than those in kd-tree, because inner groups in a group hierarchy have

group primitives instead of actual primitives. Therefore, the input data for tree

construction is greatly reduced in this case. Figure 2 depicts the bounding

boxes of the groups in the group hierarchy of the BART Robot. A gkDtree uses

the boundaries of these bounding boxes instead of primitive’s boundaries for

the SAH calculation.

Figure 3 depicts a sample gkDtree. The root node of each local acceleration

structure is referred to as a group node. A box in the tree indicates a group

node, which includes transform information (Tn in Figure 3). A parent and

its child nodes for consecutive transforms are merged into a group node, as

mentioned earlier (T3 and T4 in Figure 3(b)). A box in the tree indicates a

group node and a white circle is a leaf node whose children are either group

nodes or primitives. A dark circle is an inner node that is inserted during the

space partitioning. Observe that each shaded area indicates a local acceleration

structure. Leaf nodes can include either group nodes or actual primitives. We

regard such groups in the leaf nodes as primitives for the rest of the gkDtree

processing.

3.2. gkDtree Update

The gkDtree update process consists of two stages: the geometry update and

the tree update stages. In the geometry update stage, the transformation for
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Figure 3: (a) A scene graph hierarchy, (b) A sample gkDtree with five different group
nodes converted from the scene graph hierarchy.

each group that involves animation is performed. If any updates are conducted

on a group, all primitives in this group should be updated as well. The advantage

of this type of update is that the quality of the data structure becomes relatively

high.

The primitive’s AABBs that are a group’s children should be compared to

obtain a new AABB of the group. This implies that there exist dependencies

among the groups in different levels of the tree. For parallel rebuild, we calculate

the AABBs of all groups in a gkDtree, level by level, from the bottom up. After

this calculation, each group in the tree has a new AABB. Hence, there is no

more dependency among the groups in different levels. In the tree update stage,

each local acceleration structure that requires update is completely rebuilt. We

apply the general kd-tree construction method using the SAH for the rebuild. In

the following subsection, we describe how tree updates can be done in parallel.

3.3. Parallelization

Both geometry and tree update stages of the gkDtree update can be pro-

cessed in parallel. Heavy computations are involved in these stages. For the

geometry update stage, group nodes in a gkDtree are assigned to the threads,

level by level, from the bottom up, in a round-robin fashion (as shown in Fig-

ure 4). We assume that there are four threads available.
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Figure 4: (a) a sample gkDtree, (b) allocation of groups in Figure 4-(a) to four threads
for acceleration structure rebuild.

Once all of the dependencies among the groups are removed after the geom-

etry update stage is done, all of the threads can process the groups allocated

to them in parallel. It is obvious that we have to consider a reasonable load

balancing among the threads in order to achieve higher parallelization. In order

to assign the nodes evenly to the thread, it is helpful to know the amount of

primitives associated with each node. However, too much time is necessary for

a group node in an upper level of the tree to determine its number of primitives.

That is, all of the nodes in the subtree that are rooted at the group node should

be updated. Such load balancing could provide excellent results, but load bal-

ancing itself may become a bottleneck. Hence, we introduce a very simple, yet

effective, load balancing scheme.

Before applying the load-balancing scheme, we should prepare an array of

pointers to the groups, as shown in Figure 4-(b). An array of the pointers to

the groups 7, 8, 3, 4, 5, 6, 1, 2, and 0, was given. Note that the group IDs are

given in the level order traversal of the tree, beginning from the root, during

the initial tree construction. The pointers in the array are ordered from the
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bottom-most level, and from left to right on the same level. Our load-balancing

scheme simply assigns groups to the available threads, one by one, according

the order of the groups in the array. Figure 4 illustrates the scheme when there

are four threads for a sample gkDtree with nine nodes. For example, group 7

is assigned to thread 0, group 8 to thread 1, group 3 to thread 2, group 4 to

thread 3, group 5 to thread 0.

Although such assignment may not partition the computational loads into

equal amounts for the threads, it works quite well since the groups on the same

level have approximately similar amounts of computational loads. According

to our experiment, for the BART Robot scene that contains a significantly

large number of groups, this scheme enhances the update performance up to

54% (22.9ms → 14.8 ms). We applied this load-balancing scheme to further

experiments in Section 4.

3.4. gkDtree Traversal

The tree traversal method of the gkDtree is quite similar to that of a general

kd-tree. One major difference is that upon arrival at a group node, the traversal

continues from the root of the local kd-tree of the group (refer to Algorithm 1 for

more details). First, InnerNodeTraversal() in the gkDtree traversal is exactly

the same as that in kd-tree traversal. This function finds the next-visiting nodes.

If the ray visits both children nodes, the farer node, with respect to the ray,

is pushed into the stack. Also, RayPrimitiveIntersectionTest() is the same as

that in the general intersection test algorithms. However, LeafNodeTraversal()

in the gkDtree differs from that in kd-tree traversal. In the leaf node traversal,

a gkDtree recursively calls RayTrace() when a primitive’s type is a group node.

When these recursions of local group traversal are completely finished, we can

determine the final hit point of the ray.

Because gkDtree traversal is similar to kd-tree traversal, gkDtree traver-

sal may employ existing optimization methods for kd-trees like [20], such as

mailboxing [32, 33] and masked packet traversal [34]. Applying mailboxing to

gkDtrees is described in Algorithm 1. We assumed that gkDtrees use thread-

local mailboxing algorithms such as inverse mailboxing in [33] because the origi-

nal mailboxing algorithm in [32] can be harmful on multithreading environments

as described in [33]. Because of the limited size of a ring buffer for inverse mail-

boxing, efficient mailboxing strategies for gkDtrees are needed.

We here present a simple tip for a gkDtree with mailboxing. Traversal of the

same local tree multiple times is much more expensive than intersection tests
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Algorithm 1: gkDtree traversal
function RayTrace(group, ray, hitinfo)
1. if (TestAABB(group->min, group->max, ray, tmin, tmax) == true) then
2. node = group->root;
3. while (node != NULL and ray.maxt >= tmin)
4. if (node->isLeaf() == true) then
5. LeafNodeTraversal(node, ray, hitinfo);
6. if (stack.isEmpty() == false) then
7. stack.pop(node, tmin, tmax);
8. endif
9. else
10. InnerNodeTraversal(node, tmin, tmax, stack);
11. endif
12. end while
13. return true;
14. endif
15. return false;

function LeafNodeTraversal(node, ray, hitinfo)
1. for (i=0; i<node->nprims ; i++)
2. p = primitive[node->primList[i]];
3. if (p->type == Group) then
4. if (Mailboxing(groupMailbox, p)==true) then
5. if (RayTrace(p, ray, hitinfo) == true) then
6. Updatemailbox(groupMailbox, p);
7. endif
8. endif
9. else
10. if (Mailboxing(primMailbox, p)==true) then
11. RayPrimitiveIntersectionTest(ray, hitinfo);
12. Updatemailbox(primMailbox, p);
13. endif
14. endif
15. end for
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with the same primitive multiple times. Therefore, whenever a ray traverses

a local tree, the result of this traversal should be maintained in the mailbox

data as far as possible in order to avoid unnecessary traversal. To efficiently

manage this feature, we first divided a ring buffer into two buffers - one for

group primitives and one for actual primitives. Although it requires double

memory space, the additional space is still quite small. For example, if we use

two 8-entry ring buffers, the additional memory space required is only 64 bytes

per thread. Also, the cost of mailboxing is the same as that of a single ring

buffer because we choose either of these two ring buffers according to primitive

types. Next, the mailbox data is updated only if a ray intersects a group node’s

AABB. If a ray visits a group node again and the ray does not intersect with

the group node, only a duplicated ray-AABB intersection test is performed. In

contrast, if a ray visits a group node again and the ray intersects with the group

node, duplicated tree traversal should be performed. Using our mailbox writing

method, tree traversal of the latter case can be avoided more efficiently, as the

former case does not pollute the mailbox data. In contrast to these techniques

for group primitives, mailboxing for actual primitives is the same as the original

inverse mailboxing.

Like other object-based, multi-level hierarchy acceleration structures, dur-

ing the construction of the gkDtree, the empty spaces (the spaces that do not

contain any primitive) are created without any special efforts, since splitting a

node in a gkDtree is done with respect to the boundaries of the AABBs. In

other words, the split plane becomes one of the AABB boundaries of the child

group nodes. Therefore, when there is an empty space between two child nodes,

the split plane is highly likely to be determined in such a way that the empty

space will be maximized. Such an empty space is expected to enhance rendering

efficiency [25].

4. Implementation and Experiment

We analyzed the efficiency of a gkDtree in comparison with a kd-tree. In

order to ensure objectivity in the experiments, the common sections of both

a kd-tree and a gkDtree were implemented to ensure equal performance. Fur-

thermore, we used the same tree build parameters for building the acceleration

structures on the three different algorithms. These parameters were the same

as those in [13]: the intersection cost is 80, the traversal cost was 1, the empty

bonus was 0.5, and the maximum tree depth was 8 + 1.3 log2n (n: the number
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of primitives). We also performed the experiments without the empty bonus

because this empty bonus may affect tree quality. In the case of local kd-trees

including groups, the empty bonus was not used because empty space could be

naturally maximized in upper-level local trees as described in Section 3.4. Next,

we computed the cost function only with respect to the longest axis to find the

split planes as described in [13]. Finally, the maximum number of primitives

in each leaf node was set to 8 for both kd-trees and gkDtrees. As described

in Section 3.1, gkDtrees have two exceptions for the leaf size. A leaf size of 4

was used for local kd-trees including group nodes or a few primitives (less than

16). This configuration was helpful for avoiding excessive traversal as well as

intersection tests.

Since the static groups in a scene do not need to be updated during rendering,

their initial acceleration structures are maintained without modification. Hence,

we can obtain higher tree traversal performance when we build the acceleration

structures of static groups with more accurate cost functions in the preprocessing

stage as described in [20]. In contrast, the acceleration structures of dynamic

groups should be updated in every frame. Therefore, faster update is also

important. To exploit this feature, we applied different SAHs to static and

dynamic groups using split axis and leaf size. First, during the preprocessing

stage for generating a gkDtree for the first frame, the acceleration structures for

the static groups were constructed by selecting the split planes, based on the

computations of the cost function with respect to all three axes (x, y, and z).

Also, a leaf size of 4 was used for these static groups so that deeper trees could

be created. Second, dynamic groups including actual primitives (in the case of

lower-level local kd-trees) used a leaf size of 12 for faster update. To measure

the effectiveness of this method, we have performed the experiments both with

and without this approach.

The codes in [13] for the tree build and tree traversal algorithm (predomi-

nantly affecting the overall performance) were included in both codes with no

modifications, with the exception of the portions for both multi-threading, in-

verse mailboxing [33], and packet tracing [34].

For the memory management of a gkDtree, one bit is needed to distinguish

between a group node and a primitive. Generally, the number of group nodes

is smaller than that of primitives as described in Table 1. In addition, group

nodes also perform a role of inner nodes using its AABB values.

We tested the BART (Kitchen, Robot, and Museum) scenes for dynamic

ray tracing performance in Table 1. Each of the three scenes shows a different
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Table 1: Static and dynamic parts in the test scenes.

Static parts Dynamic parts Total number
Groups Primitives Groups Primitives of primitives

Kitchen 15 103K 94 7K 110K
Robot 1 9K 1911 62K 71K

Museum4 4 9K 1 1K 10K
Museum8 4 9K 1 65K 75K
Conference 278 252K 252K

type of animation. In the Kitchen scene, there are only about 7% of dynamic

primitives in the entire scene. Therefore, a partial rebuild algorithm should

work quite well on the Kitchen. The Robot scene, however, has about 87% of

dynamic primitives. The dynamic primitives in the Robot are composed of a

huge number of animation groups so that a large number of groups are generated

for a gkDtree. These groups can be processed in parallel for a gkDtree (as

described in Section 3) to achieve a higher level of scalability. Next, the Museum

scene contains deformable primitives that are absent in other scenes, and allows

the performance of tree rebuild/update algorithms to be measured. We have

chosen two different settings: the Museum4 scene with 1K dynamic triangles

and the Museum8 scene with 65K. In the former scene, gkDtree could utilize

advantages in partial update because it has a few dynamic primitives. However,

in the latter scene, the advantages in partial update diminish because there are

a large portion of dynamic triangles in the scene. Finally, we have tested the

Conference scene to measure the pure build/traversal performance of gkDtrees.

Because this scene is static, we cannot use partial update and different SAH

schemes for static and dynamic groups. Table 1 shows the composition of the

five scenes (the numbers of groups and primitives for static and dynamic parts

in each scene).

For the experiments, an Intel Core i7 980X (six core, 3.33 GHz, 12 Mbyte

cache) with 6 Gbyte of memory was used. The number of threads varies from

1 to 12 for parallelization. If the number of threads was higher than six, hyper-

threading was enabled. All images were rendered at 1024×1024 resolution with

primary rays. We utilized single ray tracing and 2× 2 packet tracing with Intel

SSE (streaming SIMD extensions). We used a well-known ray-triangle intersec-

tion algorithm in [35]. Each value in Tables 2 and 4 is the average processing

performance in ms per frame and frames per second (FPS), respectively. These

values were obtained by calculating the averages of tree update and rendering
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Table 2: Average acceleration structure update performance (in ms per frame) for the
test scenes. In the Conference scene, the initial acceleration structure construction
time is reported. S/D SAHs means applying different SAHs to static and dynamic
groups. EB is an abbreviation of empty bonus. Binned kd-trees were constructed by
the binned SAH and object median. SAH kd-trees were constructed by the full SAH
using the longest axis.

Threads S/D SAHs EB Kitchen Robot Museum4 Museum8 Conference

gkDtree

12 Y partial 3.8 14.8 5.6 852.5 N/A
12 N partial 4.2 18.9 5.6 879.2 263.0
1 Y partial 15.3 101.2 5.6 852.5 N/A
1 N partial 20.9 137.5 5.6 879.2 2139.0

binned 1 N/A Y 368.3 358.3 27.8 350.3 3053.9
kd-tree 1 N/A N 441.8 431.4 27.8 356.1 3058.3

SAH 1 N/A Y 632.4 460.7 53.0 942.9 3084.2
kd-tree 1 N/A N 715.5 518.4 52.9 930.4 3084.8

Speedup
gkDtree vs SAH kd-tree 166.4× 31.1× 9.4× 1.1× 11.7×
gkDtree vs binned kd-tree 96.9× 24.2× 5.0× 0.4× 11.6×

times for each frame, respectively.

Table 2 depicts the average update performances of kd-trees with full SAH,

kd-trees with binned SAH, and gkDtrees. Kd-trees with full SAH are imple-

mented using the longest axis as described in [13]. Also, kd-trees with binned

SAH are implemented as illustrated in [3]. First, up to the eighth level, nodes

are built by the object-median heuristic to make 256 subtrees. When we build

nodes in the subtrees, we use 32 bins if the number of primitives is larger than

32. If the number of primitives is 32 or lower, we use the exact SAH computation

rather than the binned SAH approximation.

According to Table 2, gkDtrees provided 1.1-166.4 times faster update per-

formances than kd-trees. Note that these values do not include the initial

gkDtree construction time except for the Conference scene. The initial gkDtree

construction time of the Kitchen, Robot, Museum4, and Museum8 scenes, with-

out applying different SAHs to static and dynamic groups, were 569, 83, 48, and

1250 ms, respectively. We considered only the acceleration structure update

time after the first frame. Due to the larger leaf size of dynamic groups, apply-

ing different SAH schemes to static and dynamic groups showed faster update

performance than without applying them. In the Museum scene, there is only

one dynamic group, so only one thread was performed for the dynamic group in

the Museum scene. Therefore, there was no difference between a single thread

and 12 threads. In the Conference scene, instead of using update time, we have
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measured construction time because this scene is static. Even a single-threaded

gkDtree was about 1.1∼46 times faster than a kd-tree. Such improvement was

made possible by gkDtrees’ partial update as well as the group-based SAH com-

putation.

Comparisons were made between a gkDtree and a kd-tree with the binned

SAH method. We measured the values of the binned SAH method in a single

thread. If this method is performed in parallel with our six-core CPU with

hyperthreading, it will show approximately 50-60ms in the Kitchen, Robot, and

Museum8 scenes, 5ms in the Museum4 scene, and 400-500ms in the Conference

scene. Therefore, we conclude that a gkDtree exhibits superior update perfor-

mance in comparison to the parallel binned SAH method over all the scenes

except the Museum8 scene. If an object (or triangle mesh) consists of a lot of

primitives such as those in the Museum8 scene, we can apply other parallel tree

construction algorithms [3, 5], into the local kd-tree.

These results indicate that a gkDtree provides competitive performance to

the state-of-the-art, GPU-based kd-tree construction in [8]. In the Kitchen

scene, [8] showed 42.0ms on Geforce GTX 280 and our approach showed only

3.8ms on a 3.33GHz six-core CPU. In the Robot scene, [8] showed 37.0ms and

ours showed 14.8ms.

Table 3 depicts statistical tree data as described in [11]. Because we used

a leaf size of 8 and a limited tree depth, shallower kd-trees have been built

than the kd-trees in [11]. Also, when we apply different SAHs to static and

dynamic groups, the expected costs of gkDtrees (C(T)) decreased by 12-20 %.

Consequently, the expected costs of the gkDtrees were lower than that of the

kd-trees with a full SAH using the longest axis in the Kitchen and Museum

scenes.

Table 4 depicts the ray traversal performance on 12 threads. According

to the results, gkDtrees showed competitive traversal performance when com-

pared to other tested algorithms. Performance-independent statistics in Table 5

provide further explanations. Kd-tree traversal requires only one ray-box inter-

section test per ray. These tests are performed between rays and the scene

AABB, while gkDtree traversal requires additional ray-box intersection tests

with group nodes. On the plus side, group node traversals help reduce the num-

bers of ‘normal’ node traversals and ray-primitive intersection tests in a local

tree. In contrast to the general kd-tree, primitives in a gkDtree are only split

in the local group kd-tree. Thus, redundant ray-primitive intersection tests can

be minimized. On the negative side, overlapping local trees may degrade the
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Table 3: Statistical data for the generated gkDtrees and kd-trees: NN , NL, and NNE

are the numbers of nodes, leaf nodes, and non-empty leaf nodes, respectively. NAT is
the average number of triangles per non-empty leaf. ET , EL, and EI are the expected
numbers of inner-node traversals, leaf visits, and ray-primitive intersections, for a
random ray, respectively. C(T) is the expected cost according to Equation 3 in [11].

S/D SAHs EB NN NL NNE NAT ET EL EI C(T)

Kitchen

gkDtree Y partial 931K 465K 421K 4.53 17.33 5.22 11.54 364.34
N partial 1016K 508K 449K 4.51 21.38 6.08 13.51 442.19

binned N/A Y 285K 142K 101K 10.10 37.72 7.44 14.65 714.54
kd-tree N/A N 429K 214K 187K 7.44 35.26 6.94 14.11 667.60

SAH N/A Y 112K 56K 43K 11.25 21.37 5.03 13.68 421.15
kd-tree N/A N 366K 183K 168K 7.02 23.71 5.31 13.51 461.87

Robot

gkDtree Y partial 199K 99K 91K 7.63 28.35 6.76 15.44 560.39
N partial 204K 103K 86K 6.59 35.43 8.51 18.00 701.61

binned N/A Y 347K 173K 155K 8.67 47.98 8.54 19.12 890.78
kd-tree N/A N 490K 245K 234K 8.10 40.31 7.30 19.12 750.59

SAH N/A Y 163K 81K 71K 8.76 28.72 6.34 22.33 557.70
kd-tree N/A N 307K 153K 146K 7.93 29.01 6.40 18.01 563.12

Museum4

gkDtree Y partial 13K 6K 4K 9.31 17.42 6.75 24.93 396.35
N partial 25K 12K 8K 6.78 20.24 7.49 24.35 453.42

binned N/A Y 15K 7K 5K 8.61 26.98 6.08 25.47 526.28
kd-tree N/A N 30K 15K 14K 6.20 23.75 5.46 24.45 465.48

SAH N/A Y 26K 13K 9K 6.85 22.20 5.53 22.49 438.69
kd-tree N/A N 28K 14K 13K 6.14 21.27 5.02 24.58 419.41

Museum8

gkDtree Y partial 173K 86K 83K 49.57 17.80 6.83 30.69 403.54
N partial 181K 90K 83K 36.09 20.54 7.54 29.99 458.91

binned N/A Y 274K 137K 130K 60.87 34.87 7.02 32.59 663.65
kd-tree N/A N 202K 101K 99K 63.48 31.68 6.45 32.31 604.32

SAH N/A Y 172K 86K 80K 33.69 22.96 5.30 28.69 450.43
kd-tree N/A N 171K 85K 84K 32.40 22.04 5.15 29.62 433.64

Conference

gkDtree N/A partial 1219K 609K 563K 11.95 54.23 14.76 65.76 1108.65

binned N/A Y 1590K 795K 728K 17.09 54.44 10.48 105.21 1026.19
kd-tree N/A N 1921K 960K 920K 12.60 50.52 9.83 104.19 954.39

SAH N/A Y 851K 425K 390K 13.68 43.38 9.48 111.74 840.26
kd-tree N/A N 1518K 759K 740K 11.50 39.33 8.58 112.61 761.56
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Table 4: Average ray traversal performance including Phong shading and texture
mapping (in frames per second) for the test scenes. Note that Phong shading and
texture mapping were performed without SIMD instructions.

S/D SAHs EB Kitchen Robot Museum4 Museum8 Conference

Single ray traversal

gkDtree
Y partial 6.12 5.53 6.03 4.81 N/A
N partial 5.67 5.17 4.37 3.79 4.10

binned N/A Y 4.74 4.29 5.22 3.48 4.33
kd-tree N/A N 5.16 4.45 5.46 3.67 4.30

SAH N/A Y 4.93 5.53 5.58 4.32 4.61
kd-tree N/A N 5.77 4.96 5.44 4.48 4.62

2x2 packet traversal

gkDtree
Y partial 12.47 11.91 14.24 10.58 N/A
N partial 11.78 10.76 12.15 9.48 11.30

binned N/A Y 9.79 9.13 12.11 8.55 10.44
kd-tree N/A N 10.29 9.37 13.15 9.00 10.39

SAH N/A Y 10.28 10.43 12.48 10.00 11.22
kd-tree N/A N 11.27 10.05 13.48 10.36 11.35

traversal performance.

In the case of single ray traversal, due to overlapping, normal gkDtrees

showed 2-22% slower traversal performance than the best case of kd-trees with

SAH. However, when we apply different SAHs to static and dynamic groups

in the case of dynamic scenes, not only tree update performance but also tree

traversal performance were increased. As a result, gkDtrees showed up to 6%

faster traversal performance than kd-trees with a full SAH using the longest

axis.

In the case of packet traversal, the normal gkDtrees showed slightly faster

performance than kd-trees in the Kitchen and Robot scenes. Also, when we

apply different SAHs to static and dynamic groups, gkDtrees showed 2-14%

faster traversal performance than kd-trees in the all BART scenes. These results

indicated that gkDtrees have relatively better performance on packet tracing.

We explain the reason as follows. Kd-trees’ major advantage is early termination

using strict front-to-back traversal [17]. In contrast, gkDtrees only guarantee

early termination in a local tree due to overlapping groups. It is the main

weakness of gkDtrees. However, packet tracing would reduce the advantage of

the early termination because the traversal of a ray packet is terminated only if

all rays in the packet finished their traversals [34].

In contrast to a gkDtree, the parallel binned SAH method always decreases
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Table 5: Performance-independent statistics with single ray tracing.

S/D SAHs EB Kitchen Robot Museum4 Museum8 Conference

Ray-box intersection tests per ray

gkDtree Y partial 9.05 8.48 4.23 4.22 N/A
N partial 9.02 8.48 4.24 4.25 11.97

binned N/A Y 1.00 1.00 1.00 1.00 1.00
kd-tree N/A N 1.00 1.00 1.00 1.00 1.00

SAH N/A Y 1.00 1.00 1.00 1.00 1.00
kd-tree N/A N 1.00 1.00 1.00 1.00 1.00

Node traversals per ray

gkDtree Y partial 45.19 49.03 43.97 46.78 N/A
N partial 50.08 55.75 61.88 64.60 56.53

binned N/A Y 62.27 65.99 48.49 68.10 58.59
kd-tree N/A N 57.41 59.08 42.09 60.45 57.42

SAH N/A Y 48.98 46.67 39.27 42.44 37.73
kd-tree N/A N 43.40 47.08 35.73 40.74 35.35

Ray-primitive intersection tests per ray

gkDtree Y partial 9.17 12.76 14.26 17.94 N/A
N partial 10.76 13.97 16.54 20.46 27.34

binned N/A Y 17.87 22.44 26.37 38.49 30.83
kd-tree N/A N 16.47 22.69 23.31 38.11 31.50

SAH N/A Y 15.86 16.67 24.92 27.74 34.74
kd-tree N/A N 13.92 19.26 23.85 28.26 35.83

the traversal performance as contrasted with kd-trees. This method increases

the numbers of both node traversal steps and ray-primitive intersection tests in

comparison to the full SAH. Another publication [5] has also reported similar

performance degradation with this method. This performance degradation is

mainly caused by the object median for the parallel tree build. According to

these results, we can expect that our scene graph-based gkDtree would pro-

vide higher quality trees than object median-based parallelization in the case of

dynamic scenes.

Figure 5 shows the scalability of gkDtree updates with up to 12 threads.

The update frame rates on different numbers of threads were normalized by the

single threaded frame rate. As mentioned earlier, 7∼12 threads were performed

in parallel using hyper-threading because we used a six-core CPU. Hence, the

scalability in more than six threads is slowly increased. The scalability depends

heavily upon the number of dynamic primitives in the test scenes. For the Robot

and Conference scenes, the gkDtrees achieved a nearly linear speed increase up

to six threads. This result can be explained by the fact that, as long as a scene
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Figure 5: Parallel scalability of gkDtrees up to 12 threads.

has a sufficient number of dynamic groups to feed the simultaneously running

threads, all of the threads will tend to remain busy the majority of the time.

Hence, we may conclude that the gkDtree is more scalable in complex scenes

having a large number of dynamic objects. In the Museum scene, the scalability

remains approximately 1.0, although the number of threads increases, because

there is only a single dynamic group (an exploding sphere). In this case, a

gkDtree can become a hybrid with the geometry decomposition method [3, 5]

to attain better scalability.

5. Conclusion and Future Work

This paper proposed a new group-based acceleration data structure called

gkDtree for interactive ray tracing of dynamic scenes. The main idea of the

gkDtree is to incorporate both the multi-level hierarchy and parallelization ap-

proaches to a kd-tree based acceleration structure. For a gkDtree, a scene is

partitioned hierarchically using its scene graph. Only the local acceleration

structure of each group that contains moving primitives is rebuilt. In order to
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rebuild the local acceleration structures in parallel, simple, dependency-free and

load-balancing schemes have been introduced.

The experimental results indicated that a gkDtree has up to 166 times faster

update performances than a kd-tree for the BART test scenes in a six-core

hardware system environment. Particularly for the scenes containing a relatively

smaller portion of dynamic primitives (e.g., the BART Kitchen scene), a gkDtree

showed very high performance improvement in updates. In addition, a gkDtree

even improved the update performance for those scenes with a large number of

dynamic groups (e.g., the BART Robot scene). Because many real, dynamic

environments, such as game engines, have both static and dynamic objects (e.g.,

BART scenes), it is expected that our group-based parallel and partial kd-tree

construction can be used more widely.

In our future work for this study, we plan to apply the gkDtree to a GPU ray

tracer. The amount of data transfer between CPU and GPU should be carefully

monitored to improve the overall rendering performance. In addition, we plan

to combine the gkDtree with other acceleration techniques, such as the use of

precomputed triangle clusters [16]. We believe that this combination would be

effective in larger data sets.
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