
Multimed Tools Appl
DOI 10.1007/s11042-015-2534-4

Geometry transition method to improve ray-tracing
precision

Dongseok Kim · Jae-Ho Nah · Woo-Chan Park

Received: 30 September 2014 / Revised: 12 February 2015 / Accepted: 24 February 2015
© Springer Science+Business Media New York 2015

Abstract We propose a method for moving the view position to the origin and moving
the coordinates of primitives so that they are at the same distance in order to improve ray-
tracing precision. This approach exploits the principle that a floating-point number provides
higher precision near zero. In this way, we can significantly reduce the number of self-
intersections occurring in ray tracing that are caused by limited floating-point precision.
The experimental results show that the number of self-intersections is reduced by up to
84.6 %. We also propose a hardware approach to resolve the computational overhead in the
proposed algorithm. Its contribution to the hardware size is very small in comparison with
the size of the entire ray-tracing hardware.

Keywords 3D graphics · Ray tracing · Rendering artifact · Floating-point arithmetic

1 Introduction

Ray tracing is a global illumination algorithm that is able to create very realistic images
[15]. Because of the vast amount of calculation needed compared to local illumination mod-
els, global illumination based on ray tracing has not yet been used in real-time graphics
processing but has been widely used for high-quality offline rendering. With advances in
semiconductor technology, recent research has focused on developing real-time ray-tracing
algorithms [10].

D. Kim · W.-C. Park (�)
Department of Computer Engineering, Sejong University, Seoul, Republic of Korea
e-mail: pwchan@sejong.ac.kr

D. Kim
e-mail: dskim@rayman.sejong.ac.kr

J.-H. Nah
LG electronics, Seoul, Republic of Korea
e-mail: nahjaeho@gmail.com

mailto:pwchan@sejong.ac.kr
mailto:dskim@rayman.sejong.ac.kr
mailto:nahjaeho@gmail.com


Multimed Tools Appl

A dedicated hardware architecture for mobile ray tracing, called RayCore, has recently
been issued [10]. The RayCore architecture is based on a multiple instruction, multiple
data (MIMD)-based ray-tracing architecture [11] and has been developed as a hardware
architecture that can be integrated into mobile application processors (APs). Mobile APs
have many limitations compared to desktop processors, including a smaller die area, lower
power resources, and lower memory bandwidth. For these limitations, a 24-bit floating-point
format was chosen for RayCore [10] instead of the 32-bit format, but this 24-bit precision
can result in rendering more artifacts than the 32-bit precision.

The core operation of a ray-tracing system is to find the first intersection between a
ray and a primitive. Due to the limitations of the floating-point format, intersection algo-
rithms have intrinsic numerical problems that can result in rendering artifacts. To resolve
these problems, it is important to choose a good epsilon [1]. Usually, a small epsilon value
[13], called RAY EPSILON [12], is used to check if t is within some tolerance [3]. How-
ever, finding a perfect epsilon is difficult. For example, an epsilon that is too small may
result in a self-intersection problem in which the hit point of a secondary ray is located in
the same object in which it originated. In contrast, an epsilon that is too large may result
in overlaps from the extended geometry. Both examples can make incorrect images, such
as holes.

In an attempt to avoid the self-intersection problem, several related studies have been
carried out using a fixed-point format [5] or an integer format [6], object-space intersec-
tion computation [1], and by adding a small amount of padding to bounding boxes to avoid
holes [8, 9]. Hanika [5] and Heinly et al.’s [6] methods are very effective for fixed-point and
integer ray tracers, respectively, but neither method can be applied to floating-point formats
that have been widely used in most graphic applications. Dammertz and Kellers method [1]
offers higher numerical precision by avoiding some of the quantization and the avoidance
of self-intersections of secondary rays. However, this method has some potential problems
with the subdivision accuracy at irregular vertices and the performance degradation when
subdividing surfaces on the fly. Ize [8] proposed a numerically robust bounding volume
hierarchy (BVH) traversal algorithm, and Keely [9] proposed a BVH-based hardware archi-
tecture with reduced precision arithmetic. However, these approaches cannot be used with
spatial subdivision structures, such as kd-trees and grids.

In contrast to the previous work, the aim of this paper is to improve the floating-point
precision in ray tracing without modifying the acceleration data structures, traversal algo-
rithms, or data formats. The proposed algorithm consists of two simple steps. First, we
move the camera position to the origin of the coordinate. After that, the absolute value of
the coordinate is changed to a smaller absolute value than that of the original coordinate.
This method exploits a principle of floating-point arithmetic that a floating-point number
with a small absolute value has higher precision than a floating-point number with a large
absolute value. For this reason, we can reduce the inaccuracies in the intersection test results
and self-intersection problems. This concept is known as an origin offset; however, to the
best of our knowledge, our approach is the first application of an origin offset to improve
ray-tracing precision.

Additionally, we implement a hardware unit in our approach. This hardware implementa-
tion can significantly reduce the overhead of software implementation. To evaluate the effect
of our origin-offset approach in ray-tracing pipelines, we also integrate the hardware unit
with the RayCore system [10]. Thanks to the simplicity of our approach, we think it is appli-
cable not only to RayCore but also to other ray tracers. Additionally, our approach can be
used with other approaches, such as epsilon-based approaches [3, 12, 13] or padding-based
approaches [8, 9], for higher image quality.



Multimed Tools Appl

We tested the proposed algorithm on the following benchmarks: the Game Institute’s [2]
Spatial Partitioning II, Sponza, and Sibenik. The results showed that the rendering artifacts
due to low precision were reduced by 65.4 %, 84.6 %, and 24.8 %, respectively, on each
benchmark.

This paper is organized as follows: We first describe the background and related work
in Section 2. We next describe the proposed algorithm and its hardware architecture in
Section 3 and the experimental results in Section 4. Finally, we describe the conclusions
and limitations in Section 5.

2 Background and related work

2.1 Rendering artifacts

The typical number that can be represented exactly is of the form (significant
digits)×(base)(exponent). The IEEE 754 standard [7] defines single-precision normalized
values as follows:

f = (−1)s · 1.m22m21 · · · m0 · 2e−127 (1)

where the 32 bits can be interpreted as one sign bit, an 8-bit exponent, and a 23-bit mantissa.
A real number cannot be represented precisely in the floating-point format, and arithmetic
operations cannot be represented precisely in floating-point arithmetic [4]. To reduce this
error of the floating-point format, we can generally use 64-bit double precision, improve
computational algorithms, or use origin offsets.

Due to the floating-point precision, a primitive that should be missed by a ray can be hit
and vice versa. These types of errors make rendering artifacts, such as dark spots, on the ren-
dered image. There are two specific cases: a) floating-point calculation errors in intersection
tests between the ray and primitives and b) a self-intersection problem of secondary rays.
The probability of these problems occurring increases as the absolute value of a floating-
point number increases. This is because the resolution of floating-point numbers becomes
coarser as the distance from the origin increases [4]. Our goal is to reduce the probability of
rendering artifacts using origin offsets during ray tracing.

2.2 Fixed-point ray tracing

Fixed-point ray tracing [5] is a simple way to maintain high computational accuracy and
to avoid the self-intersection problem. Figure 1 shows how the self-intersection problem
for fixed-point ray tracing can be avoided. This method is as follows: Distance t measured
along ray direction w uses the same resolution as the vertex data. Therefore, it can only be
wrong by one unit of the integer grid. The calculation results might have a rounding error
as high as 0.5. The worst-case error along each axis is thus 1 + 0.5 < 2, and consequently
the ray origin needs to be shifted by only two units. This is effective for fixed-point ray
tracing; however, it has limited use for the floating-point ray tracing used by most graphic
applications.

2.3 Object space intersection computation

Dammertz and Keller [1] proposed a method of determining the point of intersection in
object space instead of computing an intersection as the distance along the ray. They directly



Multimed Tools Appl

Fig. 1 The self-intersection problem for fixed-point ray tracing [5]

computed a three-dimensional interval in object space that contains the true point of inter-
section; it can also be interpreted as an axis-aligned bounding box. It is found by hierarchical
subdivision (see also Fig. 2).

Dammertz and Keller used the subdivision algorithm that is subdivided until the subdi-
vision no longer changes in the floating-point representation. If the neighboring bounding
boxes resulting from the subdivision overlap or at least touch in the floating-point represen-
tation, no cracks can occur. In addition, they used a simple way to avoid the self-intersection
problem in which the starting point of the secondary ray is selected as the corner point of the
farthest intersection interval in the direction of the normal. However, there is a performance
problem when subdividing subdivision surfaces and calculating the axis-aligned bounding
box. For example, the render time increased about 2.5 times from 1.318 sec to 3.283 sec for
the Dog scene [1].

3 Proposed algorithm and architecture

3.1 Viewport transfer algorithm

As mentioned in Section 2.1, rendering artifacts can exist in floating-point ray tracers due
to precision problems. The probability of these rendering artifacts is proportional to an
absolute value of coordinates; thus, when a camera and an object are located far from zero,
rendering artifacts are more likely. This is because the addition and subtraction of floating-
point arithmetic are computed on the exponent of the larger number.

One goal of the proposed algorithm is to reduce these rendering artifacts caused by
floating-point precision. The key point of the proposed algorithm is the movement of the
camera position to the origin of coordinates and of objects and light sources to the origin

Fig. 2 The hierarchical refinement of the bounding boxes [1]



Multimed Tools Appl

Fig. 3 An overview of the proposed algorithm (left, original; right, transferred)

by the same amount. Figure 3 shows our idea of viewport transfer to decrease the absolute
values of coordinates.

The proposed algorithm operates as follows: First, the camera position used to generate
primary rays is changed to (0, 0, 0), as shown Fig. 4. Second, we subtract the camera position
from the coordinates of objects and light sources. As a result, the origin of the primary rays
is zero and the coordinates of objects and light sources have smaller absolute values than
the original values.

We describe a specific example to compare the original coordinates and the transferred
coordinates with our approach in Table 1. In this table, we include the camera position and
data of a particular primitive (id: 0x35c6) that generates a rendering artifact in the Game
Institutes Spatial Partitioning II scene. After applying the proposed algorithm, the camera
position is changed to (0, 0, 0) and each coordinate value of the moved triangle has smaller
absolute values than the original values. For a particular primitive in Table 1, the average
absolute values of the transferred coordinates with the proposed algorithm are 80.1 % less
than those of the original coordinates.

These numbers with smaller absolute values indicate the increased accuracy of intersec-
tion tests. To be more concrete, we can ensure high precision when we compute the t (the
distance from the ray origin to the hit point) value in a ray-triangle intersection test and run
barycentric coordinate tests in an intersection test [14].

As a result, our approach has two advantages. First, the number of cases in which primi-
tives that should be missed by a ray are hit and vice versa decreases, so the accuracy of the

Fig. 4 Proposed algorithm’s object coordinate transfer



Multimed Tools Appl

Table 1 An example result of our approach in the Spatial Partitioning II scene

Original Transfeered Reduction rate of

coordinates coordinates the absolute value(%)

x 780.937500 0 −
Camera y 141.634766 0 −

z 73.593750 0 −
x 941.414063 160.476563 83.0

Vertex 0 y 196.027344 54.392578 72.2

z 113.305664 39.711914 65.0

x 950.984375 170.046875 82.1

Vertex 1 y 146.320313 4.685547 96.8

z 107.782227 34.188477 68.3

x 949.000000 168.062500 82.3

Vertex 2 y 139.466797 −2.167969 98.4

z 108.924805 35.331055 67.6

nd 655.835938 132.193359 79.8

Barycentric coordinate bd −333.277344 −57.7812500 82.7

cd 296.359375 51.7421875 82.5

intersection tests is increased. Second, the probability of the self-intersection problem also
decreases.

3.2 Hardware architecture

As described above, the proposed algorithm performs the viewport transfer at each primi-
tive. Thus, its computational overheads can cause performance degradation. According to
our experiments, the performance degradation of the proposed algorithm averages 18 % on
our 24-bit software ray tracer. To resolve this problem, we implement a hardware view-
port transfer unit (VTU) and integrate the VTU with RayCore [10]. The existence of the
VTU has been noted in [10] as a geometric transition. A VTU does not significantly affect
the entire hardware size because it is very small; a VTU only requires a few floating-point
adders and multipliers and does not require any on-chip memory or complex control logics.

Fig. 5 Proposed hardware architecture



Multimed Tools Appl

Fig. 6 Benchmarks: Spatial partitioning II(left), Sponza(center), Sibenik(right)

Figure 5 shows the proposed hardware architecture. The data from the external memory
through a bus are converted by a VTU. The converted data are then stored to the acceleration
structure (AS) cache. The VTU is fully pipelined for high performance and does not require
off-chip memory accesses. As a result, the insertion of the VTU into RayCore does not
cause performance degradation.

4 Experimental results

4.1 Experimental environment and benchmark

To measure the effect of the proposed method, we used a 24-bit software ray tracer on a
desktop with Intel i5-2500 3.3 GHz CPU and 8 GB RAM. The screen resolution of rendering
images was 800x480. We used a single-point light source. As a result, 384,000 primary rays
and 384,000 shadow rays were generated per frame.

For the performance evaluation, we selected three scenes: the Game Institutes lab project
16.1 Spatial Partitioning II, Sponza, and Sibenik (see Fig. 6). The first benchmark is com-
prised of several rooms and it is connected by a long passage between each room. This
benchmark serves as the momentum to start this study because this scene showed many
rendering artifacts with the 24-bit ray tracer. The Sponza and Sibenik scenes have been
widely used in ray tracing, and the original geometry data of each scene are close to zero.

Table 2 Benchmark details

x y z

Spatial

Camera position 780.937500 141.634766 73.5937500

Partitioning II Bounding box
Min −885.726563 −278.933594 −886.484375

Max 1241.906250 278.933594 1003.179688

Sponza

Camera position −1187.687500 700.382813 149.572266

Bounding box
Min −1743.747559 −92, 323967 −781.708435

Max 1745.200684 1566.984131 781.403748

Sibenik

Camera position −1633.300780 643.249512 −666.711365

Bounding box
Min −2777.996830 −3.05996895 −851.363403

Max 1258.215700 3063.028810 851.363403



Multimed Tools Appl

Fig. 7 Spatial partitioning II scene(left, original 24bit; center, proposed 24bit; right, original 32bit)

These scenes have been modified to make them 100 times larger so that they have large
coordinates, like the Green Bunny scene in [5].

Table 2 shows each benchmarks details. Bounding boxes show the minimum and max-
imum coordinates of objects in each scene, and the maximum absolute values of the
scenes can be obtained from the bounding boxes. For the Spatial Partitioning II scene, we
chose a camera position that shows objects that should be missed by rays. For the other
two scenes, the camera positions were selected in the outskirts and have large absolute
values.

4.2 Intersection test error

Figure 7 shows one particular room in the first benchmark. Two primitives (id: 0x7aab
[left], 0x7b13 [right]) that should be missed are shown in the yellow rectangles of the
left image. A ray hit primitive (id: 0x7646 [left], 0x7b22 [right]) that should be hit, and
therefore two primitives (id: 0x7aab [left], 0x7b13 [right]) that should be missed, are not
shown in the viewport transferred image (center) and the 32-bit floating-point format image
(right).

4.3 Self-intersection problem

We compared our approach to the original in terms of the number and the probability of the
self-intersection problem (see also Table 3). According to the results, our approach reduced
the probability of the self-intersection problem in both 24-bit and 32-bit floating-point for-
mats. The number of self-intersection problems was also reduced up to 84.6 % and 99.1 %
on the 24-bit and 32-bit floating point formats, respectively.

Table 3 The number and the reduction of self-intersection problems

24-bit floating-point format 32-bit floating-point format

Original Proposed Reduction Original Proposed Reduction

Count % Count % % Count % Count % %

Spatial partitioning 13,091 3.4 4,524 1.2 65.4 212 0.1 2 0.0 99.1

Sponza 3,172 0.8 487 0.1 84.6 0 0.0 0 0.0 −
Sibenik 22,310 5.8 16,767 4.4 24.8 208 0.1 117 0.1 43.7



Multimed Tools Appl

Fig. 8 (left) Original images, (right) rendered images with our approach

Figure 8 shows the comparison of the three cases in our benchmarks. The left images
of each figure are the original images using the 24-bit floating-point format, and the right
images are the improved images by the proposed algorithm. It is easy to find many ren-
dering artifacts in the yellow rectangles in the original images. In contrast, our approach
significantly reduces the rendering artifacts at the same pixels.

5 Conclusion and future work

In this paper, we have proposed a method to improve image quality by reducing rendered
artifacts. Our method involves moving the camera position to the origin and the coordinates
of primitives the same amount. As a result, the absolute value of the computational num-
ber becomes less, so the floating-point precision is improved in ray tracing and rendered
artifacts are reduced an average of 58.3 %.

The computational overhead required for the proposed algorithm can cause performance
degradation. The proposed algorithm is implemented using hardware and integrated with
RayCore [10]. This additional hardware unit is much smaller than the whole RayCore



Multimed Tools Appl

system, so it does not significantly affect either the performance or the hardware size of the
ray-tracing system.

The proposed algorithm has two limitations. First, if a camera position is close to zero,
the proposed algorithm has no advantage because of the following reason. The absolute
value of the coordinates of the translated object will still be large because the reduced
amount of the absolute value of the coordinates will be very small. Second, if the position
of an object is close to zero and the camera position is far from zero, the proposed algo-
rithm will not be very advantageous because of the following reason. The absolute value
of the coordinates of the translated object will still be large because a number with a small
absolute value is changed to a number with a large absolute value. In these cases, one of
the two numbers has a large absolute value. For this reason, an intersection test error or a
self-intersection problem can occur.

In the future, we will address these limitations by improving the proposed algorithm.
To accomplish this, we will reduce the precision loss in the addition or subtraction in the
floating-point arithmetic and use variable epsilon values to ensure fewer losses. In addition,
we believe that the combination of our approach and a method using a small epsilon [13]
called RAY EPSILON [12], robust BVH algorithms [8], or BVH hardware architectures [9]
can result in more accurate ray-traced images.

Acknowledgments This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology
(NRF-2012R1A1A2004624).

References

1. Dammertz H, Keller A (2006) Improving ray tracing precision by object space intersection
computation. In: Proceedings of the 2006 IEEE symposium on interactive ray tracing, pp 25–
32

2. Game institute. http://www.gameinstitute.com/game-development/. Accessed 1 April 2014
3. Glassner A (ed) (1989) An introduction to ray tracing. Academic Press Ltd
4. Goldberg D (1991) What every computer scientist should know about floating-point arithmetic. ACM

Comput Surv (CSUR) 23:5–48
5. Hanika J (2007) Fixed point hardware ray tracing. dissertation, Ulm University
6. Heinly J, Recher S, Bensema K, Porch J, Gribble C (2009) Integer ray tracing. Journal of Graphics,

GPU, and Game Tools 14:31–56
7. IEEE standard for binary floating-point arithmetic for microprocessor systmes ANSI/IEEE Std. 754

(1985)
8. Ize T (2013) Robust BVH ray traversal. Journal of Computer Graphics and Techniques 2(2):12–

27
9. Keely S (2014) Reduced precision hardware for ray tracing. High Performance Graphics,

pp 29–40
10. Nah JH, Kwon HJ, Kim DS, Jeong CH, Park J, Han TD, Manocha D, Park WC (2014) RayCore: A

ray-tracing hardware architecture for mobile devices. ACM Trans Graph 33(5):162
11. Park WC, Nah JH, Park JS, Lee KH, Kim DS, Kim SD, Park JH, Kim CG, Kang YS, Yang SB, Han

TD (2008) An FPGA implementation of whitted-style ray tracing accelerator. IEEE Symposium on
Interactive Ray Tracing:187–187

12. Pharr M, Humphreys G (2004) Physically based rendering from theory to implementation. Morgan
Kaufmann Publishers

13. Suffern K (2007) Ray tracing from the ground up. A K Peters
14. Wald I (2004) Realtime ray tracing and interactive global illumination. Dissertation, Sarrland University
15. Whitted T (1980) An improved illumination model for shaded display. Commun ACM 23(6):343–

349

http://www.gameinstitute.com/game-development/


Multimed Tools Appl

Dongseok Kim received the B.S. and M.S. degrees from the Department of Computer Engineering, Sejong
University in 2006 and 2008, respectively. Currently, he is a Ph.D. student at Department of Computer Engi-
neering, Sejong University. His research interests include ray tracing, rendering algorithms, advanced shading
model, acceleration structures, and graphics hardware.

Jae-Ho Nah received the B.S., M.S., and Ph.D. degrees from the Department of Computer Science, Yon-
sei University in 2005, 2007, and 2012, respectively. Currently, he is a senior research engineer at LG
Electronics. His research interests include ray tracing, rendering algorithms, and graphics hardware.



Multimed Tools Appl

Woo-Chan Park was born on 1 May, 1970, in Korea. He received the BS, MS, and PhD degree in computer
science from Yonsei University, Seoul, Korea, in 1993, 1995, and 2000 respectively. He is currently associate
professor at Sejong University. His research interests include 3D rendering processor architecture, ray trac-
ing accelerator, parallel rendering, high performance computer architecture, computer arithmetic, and ASIC
design.


	Geometry transition method to improve ray-tracing precision
	Abstract
	Introduction
	Background and related work
	Rendering artifacts
	Fixed-point ray tracing
	Object space intersection computation

	Proposed algorithm and architecture
	Viewport transfer algorithm
	Hardware architecture

	Experimental results
	Experimental environment and benchmark
	Intersection test error
	Self-intersection problem

	Conclusion and future work
	Acknowledgments
	References


