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Introduction to Ray Tracing 

• Rendering technique by tracing the path of light

• Generates high-quality visual effects

• Reflection, refraction, shadows, etc.

• Widely used for off-line rendering

• Ray tracing goes mainstream for real-time 

rendering [Hurley 2005; Mark 2008]

A ray-traced image 

created with POV-ray



• Performance requirement [Govindaraju et al. 2008]
: 1G rays/s ≒ x                     x x
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Related Work

• Dedicated ray tracing hardware

• Packet-based SIMD architecture

• SaarCOR [Schmittler et al. 2004]

• RPU [Woop et al. 2005], D-RPU [Woop et al. 2006]

• RTE [Davidovic et al. 2010]

• Wide-SIMD architecture

• StreamRay [Gribble and Ramani 2008]

• MIMD architecture

• TRaX [Spjut et al. 2009] 

• MIMD threaded multiprocessors  [Kopta et al., 2010]
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Related Work

• General purpose many-core architecture

• Wide-SIMD 

• Larrabee [Seiler et al. 2008]  Intel MIC 

• MIMD 

• Copernicus [Govindaraju et al. 2008]

• xPU [Mahesri et al. 2008] 

• Fermi GPU-based architecture [Aila and Karras 2010]

• These approaches do not yet provide sufficient 
performance for processing 1G rays/s for real-
time distributed ray tracing
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T&I Engine

• Dedicated ray tracing hardware architecture

• Accelerates traversal and intersection (T&I) operations

• This architecture can be integrated with existing 

programmable shaders
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T&I Engine

• Dedicated ray tracing hardware architecture

• Accelerates traversal and intersection (T&I) operations

• Three novel concepts

• Traversal architecture with an ordered depth-first layout

• Three-phase intersection architecture 

• Ray accumulation unit for latency hiding 



Design Decisions

• Fixed logic design for T&I

• High performance per area

• Fully pipelined architecture

• Programmable 

ray generation & shading 

• Single ray tracing

• Robust for incoherent rays

• Acceleration structure

• kd-tree: best choice for 

single ray tracing



Overall System Architecture

• Input / output 

buffers

• Ray dispatcher 



Overall System Architecture

• Traversal units 

(TRVs) 

• kd-tree traversal



Overall System Architecture

• List units (LISTs)

• Search the 

primitive list in 

a leaf node



Overall System Architecture

• The first 

intersection units 

(IST1s) 

• Ray-plane test

• Barycentric test



Overall System Architecture

• The second 

intersection unit 

(IST2) 

• Calculation of 

the final hit point 



Overall System Architecture

• L1 and L2 caches
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Traversal with

an Ordered Depth-First Layout (ODFL)

• At each traversal step, node fetching and stack 

operations are required  Increase memory traffic

• We apply two methods to our architecture:

• Ordered depth-first layout [Nah et al. 2010]

(previously announced at SIGGRAPH ASIA Sketches)

• Short-stack [Horn et al. 2007]

• A small, n-entry stack to maintain the last n pushes

• Reduces the required SRAM size for stacks



Introduction to ODFL

• Goals

• Improve the cache efficiency of depth-first layouts 

• No additional memory space 

• Our approach

• The probability of a ray intersecting with a node is 

proportional to its surface area [Macdonald and 

Booth 1990]

• Change the arrangement criterion of child nodes : 

geometric position  surface area



Traditional

Depth-First Layout

• Child nodes are arranged by their geometric positions  

[Pharr and Humphreys 2010]

(left node ≤ split plane  ≤  right node)
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Ordered Depth-First Layout
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Tree Construction and 

Traversal for ODFL

• Tree construction

• SA values are obtained by a surface area heuristic (SAH)

• Add an 1-bit reorder flag (embedded into an 8-byte node)

• Tree Traversal

• For front-to-back traversal, the reorder flag is referenced

25



Proposed Traversal 

Architecture

• Features

• 1-bit NXOR operation for the ODFL

• Supports a short-stack

• Using pre-computed inverse direction vector 

[Pharr and Humphreys 2010]



• Comparisons to other architectures

Proposed Traversal 

Architecture
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• Three-phase calculations

(a) Ray-plane test  

Ray-Triangle Intersection Test

tmax

tmin

plane 2

(miss)

plane 1

(hit)

Triangle’s

plane

R(t) = O+tD

O : origin

D : direction

Node’s

bounding box

(a) Ray-plane test

Hit Miss



• Three-phase calculations

(b) Barycentric test 

Ray-Triangle Intersection Test

(a) Ray-plane test

MissHit

MissHit

triangle 1 (hit)

triangle 2 (miss)

(b) Barycentric test



• Three-phase calculations

(c) Final hit point calculation  

Ray-Triangle Intersection Test

(a) Ray-plane test

MissHit

Hit triangle

hit
point

• line parameter: t

• barycentric coordinate: u, v

MissHit

(c) Actual hit point

(b) Barycentric test



• Three-phase calculations

(c) Final hit point calculation  

Ray-Triangle Intersection Test

(a) Ray-plane test

MissHit

Hit triangle

hit
point

• line parameter: t

• barycentric coordinate: u, v

• Previous one-phase architectures [Schmittler et al. 2004; 

Woop et al. 2005; Kim et al. 2007] do not use this property

MissHit

(c) Actual hit point

(b) Barycentric test



Three-Phase Intersection 
Test Unit

• IST1s perform 

(a) a ray-plane test

(b) a barycentric test

• If the ray does not pass 

either process, further 

computation and memory 

requests are stopped

Case 1 (miss)

Case 2 (pass the process (a))

Hit triangle

IST1

MUL MUL

MUL MUL

MUL

MUL

MUL

IST1IST1

…

IST2

MUL MUL MUL

RCP



Three-Phase Intersection 
Test Unit

Case 1 (miss)

Case 2 (pass the process (a))

Hit triangle

• IST1s perform 

(a) a ray-plane test

(b) a barycentric test

• IST2 performs

(c) final hit point calculation
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Three-Phase Intersection 
Test Unit

Case 1 (miss)

Case 2 (pass the process (a))

Hit triangle

• IST1s perform 

(a) a ray-plane test

(b) a barycentric test

• IST2 performs

(c) final hit point calculation

• Advantages

• Reduced H/W size

• Effective memory access

IST1

MUL MUL

MUL MUL

MUL

MUL

MUL

IST1IST1

…

IST2

MUL MUL MUL

RCP



Comparison to

Other Approaches

• Greatly reduced the number of arithmetic units

• High performance per area

36



Outline

• Introduction and related work

• Overall system architecture

• Traversal with an ordered depth-first layout 

• Three-phase intersection test unit

• Ray accumulation unit for latency hiding

• Simulation results and analysis

• Conclusions and future work



Background

• Each of the T&I steps requires memory access to 

obtain the shape data  memory-intensive job

• The latency of off-chip memory requests can take 

several hundred cycles

• Need for efficient latency hiding techniques 



Ray Accumulation (RA) 

Unit for Latency Hiding

• Specialized hardware multi-threading for ray tracing
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Comparison to

Existing H/W multi-threading

• Small working set size 

• A 32-entry RA buffer requires 4 KB of memory

• Effectively exploit temporal locality 

• The period between the ray’s shape data fetching is 

shorter than existing H/W multi-threading

• This feature results from our architecture’s small 

working set size
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S/W Setup

• Kd-tree construction: 

• SAH [Pharr and Humphreys 2010] with

on-the-fly pruning [Soupikov et al. 2008] 

• Sibenik, Fairy, Conference, and Hairball scenes 

80 K tris      174 K tris      282 K tris       2.8 M tris



S/W Setup

• Ray type

• primary ray, ambient occlusion (AO) ray, and diffuse ray

• 1024x768 resolution, 32 samples per ray

• This setup is the same as that in nVIDIA GPU ray 

tracer [Aila and Laine 2009] except for the type of 

acceleration structure



H/W Setup

• DRAM simulation

• The GDDR3 memory simulator in GPGPU-Sim 

[Bakhoda et al. 2009]

• 8-channel 1GHz GDDR3 memory (up to 128 GB /s)

• First-Ready First-Come First-Serve memory access 

scheduling [Rixner et al. 2000]

• Cache simulation

• L1 latency of one cycle

• L2 latency of 20 cycles



H/W Complexity



Area Estimation

• 500 MHz, 65 nm process, 200mm2 die size

• Reference: [Woop 2007; Muralimimanohar et al. 2007; 

Mahesri et al. 2008; Spjut et al. 2009; Kopta et al. 2010]



Cycle-Accurate 

Simulation Results

(Mrays/s)
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• Assumption: four T&I cores (48.50 mm2)



Comparison to

Other Approaches

(Mrays/s)

48

• Diffuse path tracing

• Conference scene

CPU         GPU        MIC        Ray tracing H/W
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Conclusions and

Future Work

• A novel hardware architecture for tree traversal 

and intersection tests

• Future work

• Support various primitive types

• Support dynamic scenes

• Combine our architecture with shading filter stacks 

[Gribble and Ramani 2008] for complex shading

• ASIC verification
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