SIGGRAPHASIA2011 HONG KONG

The 4th ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia

Conference: 12-15 December | Exhibition: 13-15 December

Hong Kong Convention and Exhibition Centre

T&I Engine: Traversal and Intersection Engine for Hardware Accelerated Ray Tracing Jae-Ho Nah, Yonsei University

Outline

- Introduction and related work
- Overall system architecture
- Traversal with an ordered depth-first layout
- Three-phase intersection test unit
- Ray accumulation unit for latency hiding
- Simulation results and analysis
- Conclusions and future work

Outline

- Introduction and related work
- Overall system architecture
- Traversal with an ordered depth-first layout
- Three-phase intersection test unit
- Ray accumulation unit for latency hiding
- Simulation results and analysis
- Conclusions and future work

Introduction to Ray Tracing

- Rendering technique by tracing the path of light
- Generates high-quality visual effects
 - Reflection, refraction, shadows, etc.
 - Widely used for off-line rendering
- Ray tracing goes mainstream for real-time rendering [Hurley 2005; Mark 2008]

← A ray-traced image created with POV-ray

www.SIGGRAPH.org/ASIA2011

SIGGRAPHASIA2011 HONG KONG

Real-time Ray Tracing

• Performance requirement [Govindaraju et al. 2008]

Related Work

- Dedicated ray tracing hardware
 - Packet-based SIMD architecture
 - SaarCOR [Schmittler et al. 2004]
 - RPU [Woop et al. 2005], D-RPU [Woop et al. 2006]
 - RTE [Davidovic et al. 2010]
 - Wide-SIMD architecture
 - StreamRay [Gribble and Ramani 2008]
 - MIMD architecture
 - TRaX [Spjut et al. 2009]
 - MIMD threaded multiprocessors [Kopta et al., 2010]

Related Work

- General purpose many-core architecture
 - Wide-SIMD
 - Larrabee [Seiler et al. 2008] → Intel MIC
 - MIMD
 - Copernicus [Govindaraju et al. 2008]
 - xPU [Mahesri et al. 2008]
 - Fermi GPU-based architecture [Aila and Karras 2010]

Related Work

- General purpose many-core architecture
 - Wide-SIMD
 - Larrabee [Seiler et al. 2008] → Intel MIC
 - MIMD
 - Copernicus [Govindaraju et al. 2008]
 - xPU [Mahesri et al. 2008]
 - Fermi GPU-based architecture [Aila and Karras 2010]
- These approaches do not yet provide sufficient performance for processing 1G rays/s for realtime distributed ray tracing

Contents

- Introduction and related work
- Overall system architecture
- Traversal with an ordered depth-first layout
- Three-phase intersection test unit
- Ray accumulation unit for latency hiding
- Simulation results and analysis
- Conclusions, limitations, and future work

- Dedicated ray tracing hardware architecture
 - Accelerates traversal and intersection (T&I) operations

This architecture can be integrated with existing programmable shaders

T&I Engine

- Dedicated ray tracing hardware architecture
 - Accelerates traversal and intersection (T&I) operations
- Three novel concepts
 - Traversal architecture with an ordered depth-first layout
 - Three-phase intersection architecture
 - Ray accumulation unit for latency hiding

Design Decisions

- Fixed logic design for T&I
 - High performance per area
 - Fully pipelined architecture
 - Programmable ray generation & shading
- Single ray tracing
 - Robust for incoherent rays
- Acceleration structure
 - kd-tree: best choice for single ray tracing

Overall System Architecture

- Input / output
 buffers
- Ray dispatcher

SIGGRAPHASIA2011 HONG KONG

Overall System Architecture

 Traversal units (TRVs)

SIGGRAPHASIA2011 HONG KONG

kd-tree traversal

List units (LISTs)

SIGGRAPHASIA2011 HONG KONG

 Search the primitive list in a leaf node

The first intersection units (IST1s)

SIGGRAPHASIA2011 HONG KONG

- Ray-plane test
- Barycentric test

Overall System Architecture

The second intersection unit (IST2)

SIGGRAPHASIA2011 HONG KONG

 Calculation of the final hit point

Overall System Architecture

L1 and L2 caches

SIGGRAPHASIA2011 HONG KONG

Outline

- Introduction and related work
- Overall system architecture
- Traversal with an ordered depth-first layout
- Three-phase intersection test unit
- Ray accumulation unit for latency hiding
- Simulation results and analysis
- Conclusions and future work

Traversal with SIGGRAPHASIA2011 an Ordered Depth-First Layout (ODFL)

- At each traversal step, node fetching and stack operations are required → Increase memory traffic
- We apply two methods to our architecture:
 - Ordered depth-first layout [Nah et al. 2010] (previously announced at SIGGRAPH ASIA Sketches)
 - Short-stack [Horn et al. 2007]
 - A small, *n*-entry stack to maintain the last *n* pushes
 - Reduces the required SRAM size for stacks

Introduction to ODFL

- Goals
 - Improve the cache efficiency of depth-first layouts
 - No additional memory space
- Our approach
 - The probability of a ray intersecting with a node is proportional to its surface area [Macdonald and Booth 1990]
 - Change the arrangement criterion of child nodes : geometric position → surface area

Traditional Depth-First Layout

 Child nodes are arranged by their geometric positions [Pharr and Humphreys 2010] (left node ≤ split plane ≤ right node)

Ordered Depth-First Layout SIGGRAPHASIA2011 HONG KONG

 Child nodes are arranged by their surface areas (SA) (left node > right node)

Tree Construction and Traversal for ODFL

- Tree construction
 - SA values are obtained by a surface area heuristic (SAH)
 - Add an 1-bit reorder flag (embedded into an 8-byte node)
- Tree Traversal
 - For front-to-back traversal, the reorder flag is referenced

Proposed Traversal Architecture

- Features
 - 1-bit NXOR operation for the ODFL
 - Supports a short-stack
 - Using pre-computed inverse direction vector [Pharr and Humphreys 2010]

Proposed Traversal Architecture

Comparisons to other architectures

Table 3: Comparison to other traversal architectures. Throughputis the number of traversal steps per cycle.

	SaarCOR	RPU	D-RPU	Ours
	[Schmittler et al. 2004]	[Woop et al. 2005]	[Woop 2007]	
FP ADD	4	4	16	1
FP MUL	0	4	16	1
FP RCP	4	0	4	0
Stack entry	32	32	32	4
Peak throughput	4	4	4	1
Architecture	SIMD	SIMD	SIMD	MIMD
AS	kd-tree	kd-tree	B-KD tree	kd-tree
Special feature			node update	ODFL

Outline

- Introduction and related work
- Overall system architecture
- Traversal with an ordered depth-first layout
- Three-phase intersection test unit
- Ray accumulation unit for latency hiding
- Simulation results and analysis
- Conclusions and future work

Three-phase calculations
 (a) Ray-plane test

Three-phase calculations
 (b) Barycentric test

Three-phase calculations
 (c) Final hit point calculation

- line parameter: t
- barycentric coordinate: u, v

SIGGRAPHASIA2011 HONG KONG

 Three-phase calculations (c) Final hit point calculation

Hit triangle

- line parameter: t •
- barycentric coordinate: u, v

Previous one-phase architectures [Schmittler et al. 2004; Woop et al. 2005; Kim et al. 2007] do not use this property

Three-Phase Intersection Test Unit

Case 1 (miss) Case 2 (pass the process (a))

- IST1s perform
 - (a) a ray-plane test
 - (b) a barycentric test
 - If the ray does not pass either process, further computation and memory requests are stopped

Three-Phase Intersection Test Unit

- Case 1 (miss) Case 2 (pass the process (a))
- Hit triangle

- IST1s perform
 - (a) a ray-plane test
 - (b) a barycentric test
- IST2 performs
 - (c) final hit point calculation

Three-Phase Intersection Test Unit

Case 1 (miss) Case 2 (pass the process (a))

Hit triangle

- IST1s perform
 - (a) a ray-plane test
 - (b) a barycentric test
- IST2 performs
 - (c) final hit point calculation
- Advantages
 - Reduced H/W size
 - Effective memory access

Comparison to Other Approaches

- Greatly reduced the number of arithmetic units
- High performance per area

	SaarCOR	D-RPU	CDE	Ours	
	[Schmittler et al. 20	04][Woop 2007][H	Kim et al. 2007]	IST1	IST2
FP ADD	12	17	12	7	0.375
FP MUL	11	21	27	7	0.375
FP RCP	1	1	1	0	0.125
Throughput	0.8	0.5	1.0		0.76
Algorithm	[Wald 2004]	[Möller and T	rumbore 1997]	[Shevts	sov et al. 2007]

Outline

- Introduction and related work
- Overall system architecture
- Traversal with an ordered depth-first layout
- Three-phase intersection test unit
- Ray accumulation unit for latency hiding
- Simulation results and analysis
- Conclusions and future work

Background

- Each of the T&I steps requires memory access to obtain the shape data → memory-intensive job
- The latency of off-chip memory requests can take several hundred cycles
- Need for efficient latency hiding techniques

Ray Accumulation (RA) Unit for Latency Hiding

• Specialized hardware multi-threading for ray tracing

Comparison to Existing H/W multi-threading

- Small working set size
 - A 32-entry RA buffer requires 4 KB of memory
- Effectively exploit temporal locality
 - The period between the ray's shape data fetching is shorter than existing H/W multi-threading
 - This feature results from our architecture's small
 working set size

SIGGRAPHASIA2011 HONG KONG

Outline

- Introduction and related work
- Overall system architecture
- Traversal with an ordered depth-first layout
- Three-phase intersection test unit
- Ray accumulation unit for latency hiding
- Simulation results and analysis
- Conclusions and future work

S/W Setup

- Kd-tree construction:
 - SAH [Pharr and Humphreys 2010] with on-the-fly pruning [Soupikov et al. 2008]
- Sibenik, Fairy, Conference, and Hairball scenes

80 K tris 174 K tris 282 K tris 2.8 M tris

www.SIGGRAPH.org/ASIA2011

S/W Setup

- Ray type
 - primary ray, ambient occlusion (AO) ray, and diffuse ray
- 1024x768 resolution, 32 samples per ray
- This setup is the same as that in nVIDIA GPU ray tracer [Aila and Laine 2009] except for the type of acceleration structure

H/W Setup

- DRAM simulation
 - The GDDR3 memory simulator in GPGPU-Sim [Bakhoda et al. 2009]
 - 8-channel 1GHz GDDR3 memory (up to 128 GB/s)
 - First-Ready First-Come First-Serve memory access scheduling [Rixner et al. 2000]
- Cache simulation
 - L1 latency of one cycle
 - L2 latency of 20 cycles

H/W Complexity

Table 9: Complexity of a T&I core measured by the number of floating-point units and the required on-chip memory.

	ADD	MUL	RCP	CMP	RF	L1 Cache	L2 Cache
1 RD	6	9	1	12	2 KB		
24 TRV	24	24		72	271 KB	192 KB	128 KB
6 LIST					43 KB	24 KB	32 KB
8 IST1	56	56		24	117 KB	128 KB	128 KB
1 IST2		3	1		9 KB		
I/O buffer					32 KB		
Total	86	92	2	108	476 KB	344 KB	288 KB

Area Estimation

- 500 MHz, 65 nm process, 200mm² die size
- Reference: [Woop 2007; Muralimimanohar et al. 2007; Mahesri et al. 2008; Spjut et al. 2009; Kopta et al. 2010]

Functional	Area	Total Area	Memory	Area	Total Area
Unit	(mm^2)	(mm^2)	Unit	(mm^2)	(mm^2)
FP ADD	0.003	0.26	TRV L1	0.03	0.72
FP MUL	0.01	0.92	LIST L1	0.028	0.17
FP RCP	0.11	0.22	IST1 L1	0.082	0.66
FP CMP	0.00072	0.08	TRV L2		0.64
INT ADD	0.00066	0.01	LIST L2		0.24
Control/Etc.		0.35	IST1 L2		0.64
		l	4K RF	0.019	2.26
Wiring overhead					4.95
Total					12.12
	· · · · · · · · · · · · · · · · · · ·				

 Table 10: Area estimates of a T&I core.

Cycle-Accurate Simulation Results

Sponsored by ACM SIGGRAPH

www.SIGGRAPH.org/ASIA2011

Comparison to Other Approaches

• Diffuse path tracing

(Mrays/s)

Conference scene

Outline

- Introduction and related work
- Overall system architecture
- Traversal with an ordered depth-first layout
- Three-phase intersection test unit
- Ray accumulation unit for latency hiding
- Simulation results and analysis
- Conclusions and future work

Conclusions and Future Work

- A novel hardware architecture for tree traversal and intersection tests
- Future work
 - Support various primitive types
 - Support dynamic scenes
 - Combine our architecture with shading filter stacks [Gribble and Ramani 2008] for complex shading
 - ASIC verification

Acknowledgement & Q&A

- This work was supported by Samsung Electronics Co., Ltd.
- Any questions?

www.SIGGRAPH.org/ASIA2011