

T&I Engine: Traversal and

Intersection Engine for Hardware

Accelerated Ray Tracing
Jae-Ho Nah, Yonsei University

Outline

• Introduction and related work

• Overall system architecture

• Traversal with an ordered depth-first layout

• Three-phase intersection test unit

• Ray accumulation unit for latency hiding

• Simulation results and analysis

• Conclusions and future work

Outline

• Introduction and related work

• Overall system architecture

• Traversal with an ordered depth-first layout

• Three-phase intersection test unit

• Ray accumulation unit for latency hiding

• Simulation results and analysis

• Conclusions and future work

Introduction to Ray Tracing

• Rendering technique by tracing the path of light

• Generates high-quality visual effects

• Reflection, refraction, shadows, etc.

• Widely used for off-line rendering

• Ray tracing goes mainstream for real-time

rendering [Hurley 2005; Mark 2008]

A ray-traced image

created with POV-ray

• Performance requirement [Govindaraju et al. 2008]
: 1G rays/s ≒ x x x

Shadow rayPrimary ray

Reflection ray
Ambient

occlusion ray

4

Real-time Ray Tracing

1024 x 1024

resolution

8

primary rays

per pixel

4

secondary rays

per pixel

25

frames per

second

Related Work

• Dedicated ray tracing hardware

• Packet-based SIMD architecture

• SaarCOR [Schmittler et al. 2004]

• RPU [Woop et al. 2005], D-RPU [Woop et al. 2006]

• RTE [Davidovic et al. 2010]

• Wide-SIMD architecture

• StreamRay [Gribble and Ramani 2008]

• MIMD architecture

• TRaX [Spjut et al. 2009]

• MIMD threaded multiprocessors [Kopta et al., 2010]

Related Work

• General purpose many-core architecture

• Wide-SIMD

• Larrabee [Seiler et al. 2008]  Intel MIC

• MIMD

• Copernicus [Govindaraju et al. 2008]

• xPU [Mahesri et al. 2008]

• Fermi GPU-based architecture [Aila and Karras 2010]

Related Work

• General purpose many-core architecture

• Wide-SIMD

• Larrabee [Seiler et al. 2008]  Intel MIC

• MIMD

• Copernicus [Govindaraju et al. 2008]

• xPU [Mahesri et al. 2008]

• Fermi GPU-based architecture [Aila and Karras 2010]

• These approaches do not yet provide sufficient
performance for processing 1G rays/s for real-
time distributed ray tracing

Contents

• Introduction and related work

• Overall system architecture

• Traversal with an ordered depth-first layout

• Three-phase intersection test unit

• Ray accumulation unit for latency hiding

• Simulation results and analysis

• Conclusions, limitations, and future work

T&I Engine

• Dedicated ray tracing hardware architecture

• Accelerates traversal and intersection (T&I) operations

• This architecture can be integrated with existing

programmable shaders

0

1

2 3

4

5 6

T&I Engine

• Dedicated ray tracing hardware architecture

• Accelerates traversal and intersection (T&I) operations

• Three novel concepts

• Traversal architecture with an ordered depth-first layout

• Three-phase intersection architecture

• Ray accumulation unit for latency hiding

Design Decisions

• Fixed logic design for T&I

• High performance per area

• Fully pipelined architecture

• Programmable

ray generation & shading

• Single ray tracing

• Robust for incoherent rays

• Acceleration structure

• kd-tree: best choice for

single ray tracing

Overall System Architecture

• Input / output

buffers

• Ray dispatcher

Overall System Architecture

• Traversal units

(TRVs)

• kd-tree traversal

Overall System Architecture

• List units (LISTs)

• Search the

primitive list in

a leaf node

Overall System Architecture

• The first

intersection units

(IST1s)

• Ray-plane test

• Barycentric test

Overall System Architecture

• The second

intersection unit

(IST2)

• Calculation of

the final hit point

Overall System Architecture

• L1 and L2 caches

Outline

• Introduction and related work

• Overall system architecture

• Traversal with an ordered depth-first layout

• Three-phase intersection test unit

• Ray accumulation unit for latency hiding

• Simulation results and analysis

• Conclusions and future work

Traversal with

an Ordered Depth-First Layout (ODFL)

• At each traversal step, node fetching and stack

operations are required  Increase memory traffic

• We apply two methods to our architecture:

• Ordered depth-first layout [Nah et al. 2010]

(previously announced at SIGGRAPH ASIA Sketches)

• Short-stack [Horn et al. 2007]

• A small, n-entry stack to maintain the last n pushes

• Reduces the required SRAM size for stacks

Introduction to ODFL

• Goals

• Improve the cache efficiency of depth-first layouts

• No additional memory space

• Our approach

• The probability of a ray intersecting with a node is

proportional to its surface area [Macdonald and

Booth 1990]

• Change the arrangement criterion of child nodes :

geometric position  surface area

Traditional

Depth-First Layout

• Child nodes are arranged by their geometric positions

[Pharr and Humphreys 2010]

(left node ≤ split plane ≤ right node)

41

0

5

3
8

2

109

6 7

10 2 3 54 6 7 98 10

0

85

9

2

10

4

3

76

1

cache

treespace

Ordered Depth-First Layout

18

5

9
2

10

0

34

6 7

10 2 3 54 6 7 98 10

0

1 8

5 92 10

43 76

• Child nodes are arranged by their surface areas (SA)

(left node > right node)

cache

treespace

Tree Construction and

Traversal for ODFL

• Tree construction

• SA values are obtained by a surface area heuristic (SAH)

• Add an 1-bit reorder flag (embedded into an 8-byte node)

• Tree Traversal

• For front-to-back traversal, the reorder flag is referenced

25

Proposed Traversal

Architecture

• Features

• 1-bit NXOR operation for the ODFL

• Supports a short-stack

• Using pre-computed inverse direction vector

[Pharr and Humphreys 2010]

• Comparisons to other architectures

Proposed Traversal

Architecture

Outline

• Introduction and related work

• Overall system architecture

• Traversal with an ordered depth-first layout

• Three-phase intersection test unit

• Ray accumulation unit for latency hiding

• Simulation results and analysis

• Conclusions and future work

• Three-phase calculations

(a) Ray-plane test

Ray-Triangle Intersection Test

tmax

tmin

plane 2

(miss)

plane 1

(hit)

Triangle’s

plane

R(t) = O+tD

O : origin

D : direction

Node’s

bounding box

(a) Ray-plane test

Hit Miss

• Three-phase calculations

(b) Barycentric test

Ray-Triangle Intersection Test

(a) Ray-plane test

MissHit

MissHit

triangle 1 (hit)

triangle 2 (miss)

(b) Barycentric test

• Three-phase calculations

(c) Final hit point calculation

Ray-Triangle Intersection Test

(a) Ray-plane test

MissHit

Hit triangle

hit
point

• line parameter: t

• barycentric coordinate: u, v

MissHit

(c) Actual hit point

(b) Barycentric test

• Three-phase calculations

(c) Final hit point calculation

Ray-Triangle Intersection Test

(a) Ray-plane test

MissHit

Hit triangle

hit
point

• line parameter: t

• barycentric coordinate: u, v

• Previous one-phase architectures [Schmittler et al. 2004;

Woop et al. 2005; Kim et al. 2007] do not use this property

MissHit

(c) Actual hit point

(b) Barycentric test

Three-Phase Intersection
Test Unit

• IST1s perform

(a) a ray-plane test

(b) a barycentric test

• If the ray does not pass

either process, further

computation and memory

requests are stopped

Case 1 (miss)

Case 2 (pass the process (a))

Hit triangle

IST1

MUL MUL

MUL MUL

MUL

MUL

MUL

IST1IST1

…

IST2

MUL MUL MUL

RCP

Three-Phase Intersection
Test Unit

Case 1 (miss)

Case 2 (pass the process (a))

Hit triangle

• IST1s perform

(a) a ray-plane test

(b) a barycentric test

• IST2 performs

(c) final hit point calculation

IST1

MUL MUL

MUL MUL

MUL

MUL

MUL

IST1IST1

…

IST2

MUL MUL MUL

RCP

Three-Phase Intersection
Test Unit

Case 1 (miss)

Case 2 (pass the process (a))

Hit triangle

• IST1s perform

(a) a ray-plane test

(b) a barycentric test

• IST2 performs

(c) final hit point calculation

• Advantages

• Reduced H/W size

• Effective memory access

IST1

MUL MUL

MUL MUL

MUL

MUL

MUL

IST1IST1

…

IST2

MUL MUL MUL

RCP

Comparison to

Other Approaches

• Greatly reduced the number of arithmetic units

• High performance per area

36

Outline

• Introduction and related work

• Overall system architecture

• Traversal with an ordered depth-first layout

• Three-phase intersection test unit

• Ray accumulation unit for latency hiding

• Simulation results and analysis

• Conclusions and future work

Background

• Each of the T&I steps requires memory access to

obtain the shape data  memory-intensive job

• The latency of off-chip memory requests can take

several hundred cycles

• Need for efficient latency hiding techniques

Ray Accumulation (RA)

Unit for Latency Hiding

• Specialized hardware multi-threading for ray tracing

39

TRV, LIST, or IST1

pipeline

L1

CACHE

Input Buffer

Ray Accumulation Unit

4

0

1

3

rays

hit result

cache data

cache address

ray+

shape data

ray

Buffer

cache

address

cache

data

occupation

counter

ready bit

hit miss

Comparison to

Existing H/W multi-threading

• Small working set size

• A 32-entry RA buffer requires 4 KB of memory

• Effectively exploit temporal locality

• The period between the ray’s shape data fetching is

shorter than existing H/W multi-threading

• This feature results from our architecture’s small

working set size

Outline

• Introduction and related work

• Overall system architecture

• Traversal with an ordered depth-first layout

• Three-phase intersection test unit

• Ray accumulation unit for latency hiding

• Simulation results and analysis

• Conclusions and future work

S/W Setup

• Kd-tree construction:

• SAH [Pharr and Humphreys 2010] with

on-the-fly pruning [Soupikov et al. 2008]

• Sibenik, Fairy, Conference, and Hairball scenes

80 K tris 174 K tris 282 K tris 2.8 M tris

S/W Setup

• Ray type

• primary ray, ambient occlusion (AO) ray, and diffuse ray

• 1024x768 resolution, 32 samples per ray

• This setup is the same as that in nVIDIA GPU ray

tracer [Aila and Laine 2009] except for the type of

acceleration structure

H/W Setup

• DRAM simulation

• The GDDR3 memory simulator in GPGPU-Sim

[Bakhoda et al. 2009]

• 8-channel 1GHz GDDR3 memory (up to 128 GB /s)

• First-Ready First-Come First-Serve memory access

scheduling [Rixner et al. 2000]

• Cache simulation

• L1 latency of one cycle

• L2 latency of 20 cycles

H/W Complexity

Area Estimation

• 500 MHz, 65 nm process, 200mm2 die size

• Reference: [Woop 2007; Muralimimanohar et al. 2007;

Mahesri et al. 2008; Spjut et al. 2009; Kopta et al. 2010]

Cycle-Accurate

Simulation Results

(Mrays/s)

47

• Assumption: four T&I cores (48.50 mm2)

Comparison to

Other Approaches

(Mrays/s)

48

• Diffuse path tracing

• Conference scene

CPU GPU MIC Ray tracing H/W

Outline

• Introduction and related work

• Overall system architecture

• Traversal with an ordered depth-first layout

• Three-phase intersection test unit

• Ray accumulation unit for latency hiding

• Simulation results and analysis

• Conclusions and future work

Conclusions and

Future Work

• A novel hardware architecture for tree traversal

and intersection tests

• Future work

• Support various primitive types

• Support dynamic scenes

• Combine our architecture with shading filter stacks

[Gribble and Ramani 2008] for complex shading

• ASIC verification

Acknowledgement &

Q&A

• This work was supported by Samsung

Electronics Co., Ltd.

• Any questions?

