
QuickETC2: Fast ETC2 Texture Compression using Luma Differences

JAE-HO NAH, LG Electronics, South Korea

Kodim05 (768× 512)

Kodim20 (768× 512)

ISCV2_u2_v4

(8192× 8192)

Small-Char (512× 512)

Original Ours

ETC2 (p)

0.14 ms

0.10 ms

0.07 ms

12.3 ms

Etc2comp

ETC2

105 ms

100 ms

63 ms

14.1 s

ETCPACK

ETC2

380 ms

392 ms

223 ms

24.3 s

Ours

ETC2

0.27 ms

0.14 ms

0.11 ms

12.3 ms

etcpak

ETC1

0.14 ms

0.12 ms

0.08 ms

10.8 ms

etcpak

ETC2 (p)

0.20 ms

0.20 ms

0.14 ms

34.9 ms

43 ms

43 ms

2.7 s

26 ms

astcenc

ASTC 6x6

Fig. 1. Quality and performance comparison of our approach and other compressors (with their fastest settings). Performance of QuickETC2 in
the partial ETC2 mode (planar only - ETC2 (p)) is comparable to that of etcpak [Taudul and Jungmann 2020] in the ETC1 mode, but its quality is similar to
that of etcpak in the ETC2 (p) mode (see no banding artifacts on ISCV2_u2_v4). Ours in the full ETC2 mode provides much better edge handling and less color
distortion than etcpak in the ETC2 (p) mode. Compared to Etc2comp [Google Inc. and Blue Shift Inc. 2017] and ETCPACK [Arm Limited 2016; Ericsson 2018],
ours is two to three orders of magnitude faster. Compared to astcenc [Arm Limited. 2020] in the ASTC 6x6 mode, ours is two orders of magnitude faster and
shows better color preservation (Kodim05) and less ringing artifacts (Kodim20). We obtained the timings on a desktop with an AMD Ryzen 7 3700X@3.6GHz
8-core (with hyper-threading) CPU. ©Kodak, UNC GAMMA Lab, and fhernand.

Compressed textures are indispensable in most 3D graphics applications to
reduce memory traffic and increase performance. For higher-quality graph-
ics, the number and size of textures in an application have continuously
increased. Additionally, the ETC2 texture format, which is mandatory in
OpenGL ES 3.0, OpenGL 4.3, and Android 4.3 (and later versions), requires

Author’s address: Jae-Ho Nah, LG Electronics, 19, Yangjae-daero 11-gil, Seocho-gu,
Seoul, 06772, South Korea, nahjaeho@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2020/12-ART270 $15.00
https://doi.org/10.1145/3414685.3417787

more complex texture compression than the traditional ETC1 format. As a
result, texture compression becomes more and more time-consuming.

To accelerate ETC2 compression, we introduce two new compression
techniques, namedQuickETC2.The first technique is an early compression-
mode decision scheme. Instead of testing all ETC1/2 modes to compress a
texel block, we select proper modes for each block by exploiting the luma
difference of the block to reduce unnecessary compression overhead. The
second technique is a fast luma-based T- and H-mode compression method.
When clustering each texel into two groups, we replace the 3D RGB space
with the 1D luma space and quickly find the two groups that have the min-
imum luma differences. We also selectively perform the T- or H-mode and
reduce its distance candidates, according to the luma differences of each
group. We have implemented both techniques with AVX2 intrinsics to ex-
ploit SIMD parallelism. According to our experiments,QuickETC2 can com-
press more than 2000 1K×1K-sized images per second on an octa-core CPU.

CCS Concepts: • Computing methodologies → Image compression.

Additional Key Words and Phrases: texture compression, ETC2

ACM Trans. Graph., Vol. 39, No. 6, Article 270. Publication date: December 2020.

https://doi.org/10.1145/3414685.3417787

270:2 • Jae-Ho Nah

ACM Reference Format:
Jae-Ho Nah. 2020.QuickETC2: Fast ETC2 Texture Compression using Luma
Differences.ACM Trans. Graph. 39, 6, Article 270 (December 2020), 10 pages.
https://doi.org/10.1145/3414685.3417787

1 INTRODUCTION
Texture mapping is one of the fundamental concepts in computer
graphics. Textures are versatile for various types of data, such as dif-
fuse maps, normal maps, reflection maps, and lightmaps. Usually,
textures are stored in a compressed format, such as ETC1 [Ström
and Akenine-Möller 2005], ETC2 [Ström and Pettersson 2007], BC
[Microsoft 2018], ASTC [Nystad et al. 2012], or PVRTC [Fenney
2003], to reduce the requiredmemory bandwidth, memory size, and
storage space. A compressed texture should be decoded in real-time
on a GPU, so texture decompression is relatively simple, while tex-
ture compression takes longer than texture decompression.
With increasing graphics quality and screen resolution, the total

size of textures in an app (e.g., a game) has reached up to dozens of
gigabytes. Additionally, some online GIS (geographic information
systems) software (e.g., Google Maps and Google Earth) include an
extremely large amount of textures. In these cases, texture com-
pression may be a bottleneck in the SW development process. For
example, if we need to compress 5000 4K-resolution textures by us-
ing a texture encoder with a throughput of 1M pixels/s, the total
encoding time will be almost one day.
There are also a few scenarios with limited time budgets. Real-

time 3D reconstruction is one of the representative examples; high-
resolution textures, captured from the real world (e.g., ISCV2_u2_v4
in Figure 1), need to be compressed before mapping them into re-
constructed geometry [Easterbrook et al. 2010].Thus, low-speed en-
coding can make users feel stuck. If textures are resized during app
loading [Nah et al. 2018] for reducing a GPU power consumption,
the texture compression time needs to be minimized for a similar
reason. In in-home streaming [Pohl et al. 2017], in-game video cap-
turing [Kemen 2012], and web browsing [Oom 2016], low latency
is commonly critical. In the above types of software, the speed of
texture compression can be more important than its quality.
Since Krajcevski andManocha [2013] presented a fast BC7 encod-

ing algorithm, there have been several active attempts to accelerate
texture compression. Among them, etcpak [Taudul and Jungmann
2020] has been known as the fastest ETC compressor.This software
supports both the ETC1 and ETC2 codecs, and its ETC2 compres-
sion with the planar mode provides better quality with around 1.5-
2× increased compression time than the ETC1-only compression.
Because ETC1 and ETC2 are the standard formats on the Android
platforms, etcpak has been widely used by mobile app developers.
The current version of etcpak does not support the T- and H-modes
because these ETC2 modes can rapidly increase compression time,
as implemented in ETCPACK [Ericsson 2018], the reference ETC2
compressor.

1.1 Main results
Our goal is to increase the speed or quality of the existing compres-
sors. To achieve this, we present the following novel approaches
using luma (linear luminance) differences.

• To reduce the ETC2 overhead, we present an early compression-
mode decision scheme that prevents unnecessary duplicated
tests.

• To support the full ETC2mode (T, H, and planar) without sig-
nificantly increased costs, we present a new fast T-/H-mode
compression algorithm.

Our experiments show that the first scheme in the partial ETC2
mode (planar only) increases the compression speed by 30%-202%
(67% on average) compared to etcpak [Taudul and Jungmann 2020],
and the full ETC2 compressionwith a combination of the two schemes
achieves two to three orders of magnitude speed-up than Etc2Comp
[Google Inc. and Blue Shift Inc. 2017] and ETCPACK [Arm Limited
2016; Ericsson 2018].

Note that this paper is the full version of the extended abstract
[Nah 2020]. Compared to the earlier version, we introduce addi-
tional related work, describe the two novel approaches in detail,
and analyze the experimental results with limitations. The new re-
sults in this paper also show further performance and quality im-
provements, thanks to additional optimizations.

2 RELATED WORK
In this section, we will first summarize the ETC1/2 codecs. After
that, we will introduce state-of-the-art ETC compressors. Finally,
we will briefly describe the other standard texture-compression for-
mats.

2.1 ETC1/2
The basic idea of ETC1 [Ström and Akenine-Möller 2005] is a com-
bination of two base colors and per-pixel luminance modulations
in a block.The size of a block is 4×4, and an ETC1 encoder codes ei-
ther two neighboring 4×2 (horizontal) or 2×4 (vertical) sub-blocks
together. If the two sub-blocks share similar color values, then the
encoder would select the differential mode with two different base
colors in the RGB555 and dRdGdB333 formats. Otherwise, the en-
coder would separately calculate the base colors in the RGB444 for-
mat in the individual mode. For luminance modulations, the en-
coder would try to select proper modifiers for a sub-block from the
predefined codebook to fill 16 2-bit per-pixel indices with the modi-
fier values for each pixel.This ETC1 compression converts 16 24-bit
RGB pixels into a 64-bit block (a 6:1 compression ratio).

ETC2 [Ström and Pettersson 2007] improves the quality of ETC1
by adding the three new modes: T, H, and planar (Figure 2). If color
differences in a block are high and the horizontal or vertical mode
cannot properly handle the block, block artifacts can appear (see
Kodim05 and Small-char in Figure 1). To solve these artifacts, the
T- and H-modes do not limit the partition pattern to 2×4 or 4×2
subblocks and instead limit the number of colors per block to four.
After clustering the colors of a block into two groups, the T-mode
modulates the base color of the larger cluster for unevenly dis-
tributed colors. In contrast, the H-mode modulates both base colors
of the two clusters. On the other hand, the planar mode improves
gradients of slowly varying colors (see ISCV2_u2_v4 in Figure 1)
by interpolating three RGB676 base colors at the corners of each
block. An ETC2 encoder usually selects a block with the lowest er-
ror among the blocks calculated in each mode. By the use of invalid

ACM Trans. Graph., Vol. 39, No. 6, Article 270. Publication date: December 2020.

https://doi.org/10.1145/3414685.3417787

QuickETC2: Fast ETC2 Texture Compression using Luma Differences • 270:3

bit combinations, ETC2 keeps backward compatibility on ETC1 and
maintains the compression ratio.
The ETC2 codecs are mandatory in OpenGL ES 3.0 [Leech and

Lipcha 2019] and OpenGL 4.3 [Segal and Akeley 2013] and con-
sist of the ETC2 RGB codec, the additional EAC codecs, and the
ETC2/EAC RGBA codec. EAC remedies ETC1’s another shortcom-
ing: lack of alpha support. The EAC codecs use table-based alpha
compression executed independently from the ETC1/2 modes. In
the codecs, EAC compression is either solely used for compressing
a one- or two-channel texture or used with ETC2 compression for
encoding the alpha channel in an RGBA texture.
ETC1S [Khronos Group 2019] is a subset of ETC1 and one of the

base formats of Basis Universal [Binomial LLC 2020], a supercom-
pressed GPU texture compression system. Basis Universal provides
higher compression ratios than the original ETC1/2, and a super-
compressed basis texture can be transcoded into one of the standard
GPU texture compression formats (BC1-5, BC7, ETC1/2, PVRTC,
and ASTC) before being uploaded to a GPU memory. Therefore,
this system is useful for reducing the network bandwidth required
for texture streaming or app downloading.

Fig. 2. The additional ETC2 modes [Ström and Pettersson 2007]: (a) the T-
mode for an uneven color distribution in a block, (b) the H-mode for an even
color distribution in a block, and (c) the planar mode for smooth gradients.
©Strőm and Pettersson.

2.2 ETC compressors
The first author of ETC1/2 has opened the encoding and decoding
source code, named ETCPACK [Ericsson 2018], to the public. The
ETC1/2 compression logic in texture compression tools made by
mobile GPU companies, such as theMali Texture Compression Tool
and PVRTexTool, is based on ETCPACK.
ETCPACK does not support multi-threading and SIMD vector-

ization, and its slow mode takes a long compression time due to its
exhaustive search. Faster ETC compressors have been announced
as alternatives to address the performance issue. Etc2Comp [Google
Inc. and Blue Shift Inc. 2017;McAnlis 2016] accelerates ETC1/2 com-
pression by a more targeted search, fine control of search-space
exploration, and multi-threading. As a result, Etc2Comp provides
better trade-offs between quality and speed than ETCPACK. On the
other hand, etcpak [Taudul and Jungmann 2020] aims at extremely
fast ETC1/2 compression; this compressor consists of highly scal-
able, AVX2-optimized code and limits search spaces and the ETC2
compression mode (planar only). The Intel ISPC texture compres-
sor [Dufresne 2015; Intel Corp. 2019] accelerates BC, ETC1, and

ASTC compression by exploiting data- and thread-level parallelism
through the Intel SPMDProgramCompiler (ISPC). Among the com-
pressors, Unity Technologies [2017] have integrated etcpak, ETC-
PACK, and Etc2Comp into their game engine (since Unity 2017.3)
for the fast, normal, and best compression options, respectively.

2.3 Other texture compression formats
BC [Microsoft 2018] is a set of block compression formats included
in DirectX for desktop platforms. BC1 compresses a 4×4 RGB block
using two endpoints, four colors derived from the endpoints, and
a per-pixel index table. BC1 also supports a punch-through alpha
channel. BC2 consists of a 64 bit BC1 RGB data and a 64bit uncom-
pressed 4-bit alpha data in a 128-bit block. BC4 and 5 are BC1-style
alpha-compression formats for a single-channel and two-channel
alpha values, respectively. BC3 is a combination of BC1 and BC4.
BC6H is a dedicated format for HDR textures. BC7 provides very
high quality for both RGB and RGBA textures, through multiple
partition sets and endpoint formats. In OpenGL, S3TC [Iourcha
et al. 1999], RGTC, and BPTC correspond to BC1-3, BC4-5, and
BC6H/BC7, respectively.

PVRTC [Fenney 2003], one of the iOS standard formats, adopts a
different strategy compared to other block-based compression for-
mats: bilinear upscaling of two lower resolution images. Due to that,
this can alleviate block artifacts but can lose some details. PVRTC2
[Voica 2013] makes up for a lot of weakness of PVRTC regarding
compression quality and features, but it is only supported on a lim-
ited set of Android devices with PowerVR GPUs.

ASTC [Nystad et al. 2012] is mandatory in OpenGL ES 3.2, so
most of the recent Android/iOS devices support that format. Its the
most important feature is flexibility and scalability; it allows mul-
tiple block sizes (4×4 to 12×12), color channels (1-4), dimensions
(2D and 3D), and color spaces (SDR and HDR). This format also
provides comparable or better compression quality than BC7 and
ETC2, thanks to the support of the multiple compression modes
and partition sets.

If you are interested in a detailed overview of the above formats,
we recommend Paltashev and Perminov [2014]’s review article.

3 EARLY COMPRESSION-MODE DECISION
We observe that the three ETC2 modes assist ETC1 in different
ways. The planar mode achieves smooth gradients in low-contrast
regions, while the T- and H-modes reduce block artifacts in high-
contrast regions. Therefore, if we can determine proper compres-
sion mode(s) in advance according to the luma difference of a block,
we can avoid duplicated compression (Figure 3).

The procedure is described as follows.We first calculate the luma
values of each pixel in a block and find the min/max luma values
in the block. Using the values, we classify the block into one of four
types: very-low contrast (luma_diff≤T1), low-contrast (T1<luma_diff≤T2),
mid-contrast (T2<luma_diff<T3), and high-contrast (luma_diff≥T3).
We set the thresholds T𝑛 , according to our experimental results il-
lustrated in Figure 8: T1=0.03, T2=0.09, and T3=0.38.

For very-low contrast blocks, we use the planarmode.The reason
is that the planar mode is the most suitable mode to the type of
blocks to remove banding artifacts.

ACM Trans. Graph., Vol. 39, No. 6, Article 270. Publication date: December 2020.

270:4 • Jae-Ho Nah

Planar-Mode Compression

ETC1-Mode Compression

Early Compression-Mode Decision

Planar-Mode

Compression

(w/o/ Error

Calculation)

ETC1-Mode

Compression

Uncompressed

block
Uncompressed

block

Compressed

block
Compressed

block

Ours

New Fast

T-/H-Mode

Compression

Encode Selector

T-Mode Compression

H-Mode Compression

Encode Selector

Traditional

Fig. 3. ETC2-compression flow charts of the previous work (left) and ours
(right). The dotted blocks can be excluded if speed is preferable to quality.
The white blocks are newly introduced or modified in this paper. Note that
the compression order in the left chart does not affect the compression
results and can be changed.

In the case of low-contrast blocks, we check whether a block can
be smoothly expressed by the base colors at the corners of the block.
If a pair of two corresponding corner pixels (top-left and bottom-
right, or bottom-left and top-right) has the min and max luma val-
ues, we exploit a high possibility that the other pixels can be prop-
erly interpolated in the planar mode. Otherwise, we perform tra-
ditional ETC1 compression. Because we do not pass a block com-
pressed in the planar mode to the encode selector stage, we omit
the error calculation part in the planar mode for a speedup.
We compress mid-contrast blocks in the ETC1 mode. The reason

is that this mode can usually compress the type of blocks well with-
out visible banding or block artifacts.
High-contrast blocks may create block artifacts, so we perform

both the ETC1 and T-/H-mode compression. The T-/H-mode com-
pression may not find an ideal compression solution. Thus, at the
late encode selector stage, we compare the errors in the ETC1 and
T/H modes and select the block with a lower error value.

We execute this early compression-mode decision for all blocks,
so we need tominimize its overhead. To achieve this, we implement
most of the parts described above using SSE/AVX2 operations. The
key point is to avoid loop iterations when accessing 16 pixels in a
block. The detailed procedure is described as follows. First, we cal-
culate 16 8-bit luma values from the RGB colors of the 16 pixels; we
store them together in a single 128-bit integer (__m128i) variable.
After that, we obtain the minimum and maximum values and their
positions over the 16 pixels by exploiting the _mm_minpos_epu16()
function; because this function returns only the position of the min-
imum value among eight 16-bit values, we tweak the use of this
function, similar to Kluev [2014]. Finally, we perform a corner pixel
check by using a single SSE comparison of the corner index pairs
and the pixel indices corresponding to the min/max values. If nec-
essary, please see the source code in the supplemental material.

4 LUMA-BASED T-/H-MODE COMPRESSION
ALGORITHM

4.1 Analysis of traditional T-/H-mode compression
Algorithm 1 describes a brief procedure of traditional T-/H-mode
compression. First, an encoder calculates a pair of base colors by
classifying all pixels in a block into two clusters. After that, the en-
coder consecutively compresses the block in the T- and H-modes.
Finally, the encoder returns a compressed block with the lower er-
ror value between them.

ALGORITHM 1: Traditional T-/H-mode compression procedure

1: procedure ETC2_TH(𝑝𝑖𝑥)
2: {𝑐1, 𝑐2}← 𝐹𝑖𝑛𝑑𝐵𝑎𝑠𝑒𝐶𝑜𝑙𝑜𝑟𝑠(𝑝𝑖𝑥)
3: {𝑏𝑙𝑜𝑐𝑘𝑇 , 𝑒𝑟𝑟𝑜𝑟𝑇 }← 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘𝑇 (𝑝𝑖𝑥, 𝑐1, 𝑐2)
4: {𝑏𝑙𝑜𝑐𝑘𝐻, 𝑒𝑟𝑟𝑜𝑟𝐻 }← 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝐵𝑙𝑜𝑐𝑘𝐻(𝑝𝑖𝑥, 𝑐1, 𝑐2)
5: return (𝑒𝑟𝑟𝑜𝑟𝑇 < 𝑒𝑟𝑟𝑜𝑟𝐻)?{𝑏𝑙𝑜𝑐𝑘𝑇 , 𝑒𝑟𝑟𝑜𝑟𝑇 }∶{𝑏𝑙𝑜𝑐𝑘𝐻, 𝑒𝑟𝑟𝑜𝑟𝐻}
6: end procedure

We can express the computational cost of the T-/H-mode com-
pression (𝐶𝑇𝐻) with the following equation.

𝐶𝑇𝐻 = 𝑁𝐵𝐶(𝐹𝐵𝐶 ⋅𝐶𝐵𝐶 + 𝑁𝑀𝑜𝑑𝑒 ⋅ 𝑁𝐷𝑖𝑠𝑡 ⋅𝐶𝐸𝐶), (1)

where𝐶𝐵𝐶 and𝐶𝐸𝐶 are the costs of base-color calculation and error
calculation, respectively. Additionally, 𝑁𝐵𝐶 , 𝑁𝑀𝑜𝑑𝑒 , and 𝑁𝐷𝑖𝑠𝑡 are
the numbers of base-color pairs, compression modes, and distance
candidates, respectively. Note that the distancemeans an 8-bit color
difference between a base color and two paint colors in the direc-
tion (1, 1, 1). This value controls the luminance ranges of a cluster,
as depicted in Stage 6 in Figure 4. Finally, 𝐹𝐵𝐶 is a function that
outputs either one or two. If the T- and H-modes share the same
base-color pairs, the value is one; otherwise, the value is two.

𝑁𝐵𝐶 outside the parenthesis means that an encoder can itera-
tively execute the ETC2_TH() function in Algorithm 1 to test dif-
ferent base colors; for example, ETCPACK [Ericsson 2018] with the
fast option injects different clustering parameters to the T- and H-
modes and tests three color pairs per mode calculated using the
LBG algorithm [Linde et al. 1980]. Its slow option tests many more
colors by using a exhaustive search. 𝑁𝑀𝑜𝑑𝑒 in the previous work
[Ericsson 2018; Google Inc. and Blue Shift Inc. 2017] is three: T-
mode with swapping, T-mode without swapping, and H-mode.The
reason for the necessity of this swapping is to test which base color
is suitable for the upper horizontal line of a “T” character with three
paint colors (Figure 2-(a)). 𝑁𝐷𝑖𝑠𝑡 is eight, as defined in the T-/H-
distance look-up table [Ström and Pettersson 2007]. Thus, 𝐶𝑇𝐻 of
ETCPACK with the fast option is 6𝐶𝐵𝐶 + 72𝐶𝐸𝐶 .

4.2 Our approach
To remedy the performance issue, we design a new fast T-/H-mode
compression algorithm.We describe our strategy to reduce the com-
putational cost in Equation 1 as follows. First, we replace the 3D
RGB space on pixel clustering with the 1D luma space, for mini-
mizing 𝐶𝐵𝐶 . Second, we select a proper mode in advance, for de-
creasing 𝑁𝑀𝑜𝑑𝑒 from three to one. Third, we reduce the number of

ACM Trans. Graph., Vol. 39, No. 6, Article 270. Publication date: December 2020.

QuickETC2: Fast ETC2 Texture Compression using Luma Differences • 270:5

`

left right

Input 1) Sort the pairs of (luma, pix_idx)

0.27

9

0.27

12

0.30

6

…

0.84

1

0.81

4

2) Find the min (left+right)

left right
luma

pix_idx

T-mode, no swap
T-mode, swap
H-mode

3) Set a proper mode in advance

first second

4) Calculate two base colors

avg rgb

dist

start

dist idx

0
1

… 2

5) Set the start

distance index

dist

table

6) Find the best candidate

(w/ min error)

Output

(64-bit ETC2)

0.0 1.0

0.0 1.0

luma

luma

dist idx

3 4 5 6 7

best

Fig. 4. An overview of the new fast T-/H-mode compression algorithm. The above six steps convert an RGB block into a 64-bit ETC2 block. Steps 1, 2, and 4
correspond to FindBaseColors() in Algorithm 1. Step 6 corresponds to CompressBlockT/H() in Algorithm 1. Steps 3 and 5 are additional steps for a speedup.

distance candidates of a block (𝑁𝐷𝑖𝑠𝑡). Fourth, we implement the
error calculation part using SSE/AVX2 intrinsics to exploit SIMD
parallelism, and it results in a reduction in 𝐶𝐸𝐶 . Finally, we only
use one base-color pair and do not allow additional iterations with
multiple base-color pairs, thereby reducing 𝑁𝐵𝐶 to one.
Let us describe the detailed procedure of our approach. Note that

the order of the following description will be the same as the step
numbers in Figure 4.
First, we sort the pairs of a luma value and a pixel index in an

input block, in ascending order of luma values. This sorting results
in a single 1D line.
Second, to find two proper clusters, we calculate the minimum

value of the 15 summed luma differences in the line. A summed
luma difference means the luma difference in the left region plus
that in the right region after dividing the pairs into the left and right
regions. For the calculation, an iterator sweeps the line from left to
right and finds the minimum value. We add small bonus factors to
both ends of the line: 8, 4, 2, 2, 4, and 8 in the 8-bit fixed format to
the first, second, third, 13rd, 14th, and 15th elements. Adding these
bonus factors aims at preventing the two unwanted situations. First,
the longer cluster covers too large color spaces, thereby increas-
ing errors. Second, the iterator has a high possibility of selecting
the left-most or right-most candidate as the optimal point because
the shorter cluster with one element has always a “zero” difference.
This zero difference can be incorrect after converting RGB888 to
RGB444 on the ETC2 format.
Third, based on the two clusters generated from the above luma-

based clustering, we set a proper compression mode of the block
before error calculations. If the luma difference of the longer cluster
is higher than that of the shorter one by a factor of two or more,
we set the compression mode to the T-mode. Otherwise, we set the
mode to theH-mode. If the left cluster is longer than the right one in
the T-mode, we swap the two colors for further processing because
the second base color is located on the upper horizontal line of a
“T” character.

Fourth, we calculate two base colors from the two clusters. For
the calculation, we apply different strategies for the two following
cases. The first case is ranged paint colors, which corresponds to

the second base color in the T-mode and both base colors in the H-
mode. In this case, we first pick themidpoint RGB color of both ends
of each cluster because it is suitable for representing symmetric
ranges from the midpoint. We then clamp its RGB444 color to [1,
14] instead of [0, 15] because the midpoint on the minimum (0) or
maximum (15) value halves its ranges.The second case is that a base
color is equal to its paint color, which corresponds to the first base
color in the T-mode. In this case, we average all the RGB colors in
the cluster to get a base color. We then convert this color to RGB444
with a clamping range of [0, 15].

Fifth, to reduce the number of error-calculation iterations using
the distance table in the ETC2 format (Table C.8 in the OpenGL
ES 3.0 specification [Leech and Lipcha 2019]), we set the start dis-
tance index in advance, according to the average RGB distances of
the two clusters. We set the start index to ‘the distance index cor-
responding to distance d’ minus ‘three’; the higher contrast, the
higher start index. For example, if the average distance from a base
color ranges from 24 to 32, its corresponding index in the table is
five, so the start index selected by us is two. According to our ex-
periments, our three-level earlier start is conservative enough to
maintain compression quality.

Sixth, we find the best candidate with the minimum error by
changing the distance value. For error calculation, we use the per-
ceptual error metric [Ström and Akenine-Möller 2005] similar to
ETCPACK. The differences between QuickETC2 and ETCPACK in
this step are the number of distance candidates and SIMD optimiza-
tions as follows. First, we stop further iterations if the current itera-
tion does not decrease the error. This end-distance-index optimiza-
tion is based on that the pattern of error values is usually V-curves
(Figure 5). By combiningwith the start-distance-index optimization
in the fifth step, we can effectively decrease the number of distance
candidates without sacrificing image quality. Second, we deal with
16 pixels together using SSE/AVX2 intrinsics. We first calculate dif-
ferences between the pixel colors and the four paint colors and ob-
tain their luma errors. We then select the best paint color with the
minimum error per pixel. For efficient SIMD processing, we convert
16 RGB888 colors into three __m256i variables (16 pixels × 16 bits
per channel) and use the halved scaling factors (38, 76, and 14 for
each RGB channel) for the error calculation to prevent overflows

ACM Trans. Graph., Vol. 39, No. 6, Article 270. Publication date: December 2020.

270:6 • Jae-Ho Nah

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4 5 6 7

N
o
m

al
iz

ed
 E

rr
o

r

Distance Index

D=0 D=1 D=2 D=3 D=4 D=5 D=6 D=7

Fig. 5. Relationships between errors normalized to the lowest errors of each
case and distance indices during the T-/H-mode compression on Kodim05.
In this graph, we divide T/H blocks into eight cases according to their best
distance index D and clamp each result to D±2 for better visibility. The
V-curve patterns are the basis of our end-distance-index optimization.

of signed int16, similar to the ETC1 compression logic in etcpak. At
the end of an iteration, we calculate the total block error value and
compare it with the best error value from the previous iterations. If
the best error value is changed, we update the best base colors and
the corresponding pixel indices.
We finally pack the best candidate into a 64-bit T- or H-block.

The reduced total cost of our approach (𝐶 ′
𝑇𝐻) described above is

𝐶
′
𝐵𝐶+𝑁

′
𝐷𝑖𝑠𝑡 ⋅𝐶

′
𝐸𝐶 (2≤𝑁 ′

𝐷𝑖𝑠𝑡≤8), where𝐶
′ and𝑁 ′ indicate a reduced

cost and number.

5 EXPERIMENTS AND RESULTS

5.1 Test setup
For the comparison, we used the 64 textures which represent differ-
ent types, sizes, and formats. The actual images of the entire set are
available in the supplemental document. The sizes of the images
range from 256×256 to 8192×8192. Nine images contain an addi-
tional alpha channel (No. 27, 38, 41, 42, 51, 52, 55, 56, and 57), and
the others only contain three RGB channels.
We experimented on a desktopwith anAMDRyzen 7 3700X@3.6GHz

8-core (with hyper-threading) CPU and 32 GB of RAM. The operat-
ing system for our experiment is Ubuntu 20.04. For quality analysis
on the RGB and RGBA textures, we used ImageMagick 7.0.10-28
and Icy 2.0.3.0 [De Chaumont et al. 2012], respectively.
In the next subsection, we will compare our compressor with

etcpak 0.7, Etc2Comp, ETCPACK 4.0.1, and astcenc 1.7 [Arm Lim-
ited. 2020]. ETCPACK 4.0.1 is the latest version included in the Mali
Texture Compression Tool 4.3.0 [Arm Limited 2016] and provides
more features and higher speed than Ericsson’s original version
(v2.74) [Ericsson 2018]. astcenc is the reference ASTC encoder. We
selected the fastest options for each compressor because our goal
is real-time rates. We describe the detailed setting values of each
compressor as follows.

• etcpak: ETC1, partial ETC2 (planar only)
• QuickETC2 (ours): partial ETC2 (planar only), full ETC2
• Etc2Comp: effort = 0 & error metric = rgba

• ETCPACK : fast perceptual
• astcenc: very fast &

block size = 4x4 (for RGBA) or 6x6 (for RGB)

The reason for choosing different ASTC block sizes for RGB and
RGBA textures is fair comparisons between ASTC and ETC2. In
terms of compression ratios, ETC2 RGB at 4 bits per pixel (BPP) is
comparable to ASTC 6x6 at 3.56 BPP, and ETC1 and ETC2 RGBA
at 8 BPP has the same bit rate as ASTC 4x4. When we compress an
alpha texture in the ETC1 mode in etcpak, we compress the alpha
channel in the same way as the RGB channels and store the result
into a separated RGB texture. Thus, its compression ratio (4:1) is
the same as that of ETC2 RGBA.

We evaluate the performance of each encoder with the two set-
tings: highest performance and baseline control. In the former set-
ting, we set the number of threads to 16 except for single-threaded
ETCPACK and enabled the SIMD vectorization in etcpak andQuick-
ETC2. In the last setting, we commonly used a single thread and
disabled the vectorization for an algorithmic comparison.

5.2 Quantitative analysis of the results
Table 1 summarizes the experimental results. We separate the re-
sults of the RGB and RGBA textures because ETC1, ETC2 with
EAC, and ASTC differently handle the alpha channel; ETC1 does
not have any special mode for alpha compression, and ASTC pro-
vides higher compression ratios than EAC.

Let us first focus on the compression performance of the ETC
compressors. Compared to etcpak’s ETC2 mode, QuickETC2 in the
partial ETC2mode (planar only) achieves a 67% speedup on average
and up to a 202% speedup (No. 51, Vokselia Spawn), as shown in Fig-
ure 7. On the RGB textures, QuickETC2 in the partial ETC2 mode
shows almost similar performance to etcpak in the ETC1 mode,
in contrast, the average performance drop of etcpak’s ETC2 mode
is 37.8% compared to its ETC1 mode. These results indicate that
our early compression-mode decision scheme absorbs most ETC2-
planar overheads.

The addition of the T- and H-modes in QuickETC2 increases the
compression time by 33% on average.The overheads vary according
to image characteristics, as illustrated in Figure 7, because a high
proportion of high-contrast blocks in a texture leads to more T-/H-
compression tests. Compared to the other tools that fully support
the ETC2 modes, QuickETC2 is two to three orders of magnitude
faster, as shown in Table 1 and Figure 1. When we commonly dis-
able multi-threading and SIMD optimizations as a baseline, ours is
still one order of magnitude faster than them; these results prove
that QuickETC2 is a lightweight method.

Next, we compare the quality of our compressor with other ETC
compressors. For this comparison, we use the peak signal to noise
ratio (PSNR) and the structural similarity (SSIM) index [Wang et al.
2004] (Table 1 and Figure 6). QuickETC2 in the partial ETC2 mode
shows similar or slightly higher levels of PSNR/SSIM values as etc-
pak.The full ETC2 support increases PSNR values up to 1.04 dB (No.
52, Vector-Streets) and 0.15 dB on average.

Compared to Etc2Comp and ETCPACK, QuickETC2 in the full
ETC2 mode shows relatively worse quality: 0.72-1.47 dB lower av-
erage PSNR values and 0.06-0.08 lower SSIM values than the two

ACM Trans. Graph., Vol. 39, No. 6, Article 270. Publication date: December 2020.

QuickETC2: Fast ETC2 Texture Compression using Luma Differences • 270:7

Table 1. Experimental results with the 64 test textures. PSNR and SSIM val-
ues are related to quality, and units of megapixels per second (Mpixels/s)
are related to speed; the higher, the better. Note that ETC2 (p) denotes par-
tial ETC2 support - planar only. HP and BC are the abbreviations of the
highest-performance and baseline-control settings mentioned in Section
5.1, respectively.

Compressor Codec PSNR SSIM Mpixels/s
(dB) HP BC

55 RGB Textures (ETC1/2: 4 BPP, ASTC 6x6: 3.56 BPP)
etcpak ETC1 35.87 0.949 3250 44.6

ETC2 (p) 36.82 0.957 1931 28.9
QuickETC2 (ours) ETC2 (p) 37.02 0.958 3196 45.8

ETC2 37.17 0.958 2577 40.6
Etc2Comp ETC2 37.89 0.965 3.8 3.1
ETCPACK ETC2 38.09 0.966 1.4 1.4
astcenc ASTC 6x6 38.28 0.966 11.5 1.5
9 RGBA Textures (ETC1/2 & ASTC 4x4: 8 BPP)
etcpak ETC1 36.19 0.914 3742 158

ETC2 (p) 38.19 0.968 1784 24.2
QuickETC2 (ours) ETC2 (p) 38.30 0.968 3147 45.1

ETC2 38.47 0.969 2742 40.8
Etc2Comp ETC2 25.31 0.787 5.0 4.3
ETCPACK ETC2 39.94 0.975 1.1 1.1
astcenc ASTC 4x4 45.01 0.986 22.5 4.1

encoders, except for the results of Etc2Comp on the RGBA textures.
The main reason for the differences is the high-speed ETC1 com-
pression logic in etcpak; because we do not alter the logic, ETC1
blocks compressed byQuickETC2 and etcpak are the same. Etc2Comp’s
low PSNR/SSIM values on the RGBA textures are caused by its com-
pression policy; when the alpha value of a pixel on an RGBA texture
is zero, Etc2Comp writes a black RGB color to the pixel regardless
of the original RGB color. This issue has been fixed in Unity 2018.2
but still exists inGoogle’s original open-source version.
We also compare QuickETC2 with the reference ASTC encoder

astcenc because recentmobile devices support both ETC2 andASTC.
astcenc shows higher average PSNR and SSIM values than Quick-
ETC2, as shown in Table 1. Especially, ASTC provides much higher
alpha compression ratios (which are equal to higher quality at the
same BPP) than ETC2. However, our qualitative comparisons on
each image, which will be described in Section 5.3, show that each
compressor has advantages and disadvantages. If compression speed
is considered as another important factor, our compressor is com-
petitive (Table 1 and Figure 1). To sum up, if compatibility or speed
is a high priority, ETC2 compression using ours will be a better
choice, and if scalability or effective alpha compression is impor-
tant, ASTC compression using astcenc will be a good choice.
To find optimal threshold values (T1, T2, and T3) in our early

compression-mode decision, we had executed batch processingwith
the following ranges: 0.01≤T1≤0.05, 0.03≤T2≤0.12, and 0.26≤T3≤0.44.
As a result, we obtained the three graphs in Figure 8 and set the T2
and T3 to 0.09 and 0.38, respectively, because they are the best trade-
offs between performance and quality. In contrast, we set the value

5

10

15

20

25

30

35

40

45

50

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

PSNR

ETCPACK ETC2
Etc2Comp ETC2
Ours ETC2
Ours ETC2 (p)
etcpak ETC2 (p)

(Texture No.)

(dB)

0.5

0.6

0.7

0.8

0.9

1.0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

SSIM

ETCPACK ETC2
Etc2Comp ETC2
Ours ETC2
Ours ETC2 (p)
etcpak ETC2 (p)

(Texture No.)

(Texture No.)

Fig. 6. Quality comparison of the ETC2 compressors by using PSNR and
SSIM values. Several PSNR/SSIM drops of Etc2Comp are caused by its
RGBA compression policy that ignores the original RGB colors at zero-
alpha pixels. It may ormay not affect texture quality on actual applications.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Relative Performance

Ours ETC2 (p)

Ours ETC2

etcpak ETC2 (p)

(Texture No.)

(×)

Fig. 7. Performance comparison between etcpak and QuickETC2. The re-
sults are normalized to etcpak. The similar patterns between the relative
performance and PSNR/SSIM values imply that our early compression-
mode decision adaptively controls performance and quality.

ACM Trans. Graph., Vol. 39, No. 6, Article 270. Publication date: December 2020.

270:8 • Jae-Ho Nah

37.05

37.10

37.15

37.20

37.25

37.30

37.35

37.40

2,400

2,500

2,600

2,700

2,800

2,900

0.01 0.02 0.03 0.04 0.05

Mpixels/s PSNR

37.30

37.31

37.32

37.33

37.34

37.35

2,600

2,620

2,640

2,660

2,680

2,700

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

Mpixels/s PSNR

37.33

37.34

37.35

37.36

37.37

2,250

2,300

2,350

2,400

2,450

2,500

2,550

2,600

2,650

2,700

0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44

Mpixels/s PSNR

T1 T2 T3

Fig. 8. Effects of three thresholds for the early compression-mode decision scheme: T1, T2, and T3 mentioned in Section 3. The three dashed lines indicate
our choice: T1=0.03, T2=0.09, and T3=0.38. The reason for choosing the first threshold (T1=0.03) is to prevent excessive blurring.

1.4

4.5

8.2

21.6

147.6

0 50 100 150

+SIMD optimization

+Distance-range reduction

+Mode selection

Our initial version

ETCPACK Fast

(ms)

Fig. 9. T-/H-mode compression timings on Kodim05. With the early
compression-mode decision scheme, only high-contrast blocks
(luma_diff≥T3=0.38) were injected into the T-/H-mode compression
stage. We collected the results on a single thread, so the result in the last
row (1.4 ms) is approximately 10 × slower than that with multi-threading
in Figure 1 (0.13 ms).

of T1 in another way. Even though the leftmost graph in Figure 8 in-
dicates that 0.05 seems to be optimal, our choice is 0.03 because the
higher values sometimes wipe details on some of the test images.
Finally, we compare the T-/H-mode compression functions in

QuickETC2 and ETCPACK v2.74. For this experiment, we had added
ETCPACK ’s T-/H-mode compression functions to our code and con-
ducted respective tests with our function and ETCPACK ’s functions.
We also broke our function down to investigate its speedup factors
(Figure 9). On average, our algorithm achieves 95 × faster speed
with 0.005 dB higher PSNR values than ETCPACK ’s algorithm.These
results support that our cost estimation in Section 4.2 is reasonable,
and the quality of our T-/H-mode compression on high-contrast
blocks is comparable to that of ETCPACK.

5.3 Qualitative analysis of the results
According to Griffin and Olano [2015], texture quality judgments
need to consider perceptual sensitivity to compression artifacts and
geometric or texture-set masking effects; in other words, less con-
servative compression algorithms can be enough for actual render-
ing inmany cases. Chait [2015] uses subjective visual image-quality
(IQ) ratings based on visual examinations.

In that respect, we classify compression artifacts that appear in
ETC2 into five categories: block artifacts, blurring, banding, color

shifts, and loss of smooth anti-aliasing (AA) or gradients. Figure 10
illustrates representative examples of the five artifact types using
magnified images, block maps, and FLIP error maps [Andersson
et al. 2020]. Table 1 in the supplemental document tabulates our
detailed qualitative analysis of the results on each image. Accord-
ing to the results, our QuickETC2 provides comparable quality to
ETCPACK except for increased block artifacts on a few images and
minor blurring in GIS maps.

Let us look at each case in Figure 10. The block artifacts in Fig-
ure 10-(a) occur when all pixels in a block have similar luma val-
ues (luma_diff<T3=0.38), while their actual colors are quite differ-
ent. In this case, QuickETC2 does not pass the block into the T-/H-
compression path and always compresses that in the ETC1 mode.
Even if we insert the block to the T-/H-compression path, our luma-
based algorithm may not find proper base colors in this case, and
the final encode selector may eventually select the ETC1 block re-
sulting in 4×2 or 2×4 block patterns.

In contrast to the above case, the block artifacts in Figure 10-(b)
are caused by T- or H-blocks. Because etcpak’s high-speed ETC1
compression results in relatively lower-quality ETC1 blocks, the
final encode selector in Figure 3-(right) sometimes selects a T- or H-
mode block instead of an ETC1 block, in contrast to ETCPACK. As
a result, larger-sized block artifacts occur on the image. This issue
can be alleviated by high-quality ETC1 compression.

Blurring in Figure 10-(c) is caused by the false-positive of our
early compression-mode decision scheme. If the scheme misjudges
that the inside in a planar-mode block is gradually changed, this
misjudgment can blur some thin texts or geometrywith pale colors.

As shown in Figure 1, the planar mode can usually handle band-
ing problems that appear in ETC1. However, if there are block-
wise gradients (a solid color per block) in sparse regions on a high-
resolution captured image (Figure 10-(d)), the ETC2 codec cannot
make smooth gradients. However, the banding in ETC2 is much
less than that in ETC1.

Color shifts (Figure 10-(e)) and loss of smoothness (Figure 10-
(f)) are common problems in ETC1/2. The reason for these types of
artifacts is the quantization in the ETC format. A color shift often
occurs in grey or yellow colors which can be expressed as slightly
purple or greenish after compression.

ACM Trans. Graph., Vol. 39, No. 6, Article 270. Publication date: December 2020.

QuickETC2: Fast ETC2 Texture Compression using Luma Differences • 270:9

OriginalOurs ETCPACKOriginal

Image &

ꟻLIP map

Magnified

image

Block

map

Image &

ꟻLIP map

Block

map

Magnified

image

(a) Jelly (block artifacts) (c) Vector-streets (blurring)

(d) ISCV2_u2_v2 (banding) (e) Kodim19 (color shifts)

Ours ETCPACK Ours ETCPACKOriginal

(f) Kodim09 (loss of AA)

(b) Kodim05 (block artifacts)

ETC1 ETC2 T-mode ETC2 H-mode ETC2 Planar-mode

Fig. 10. Examples of compression artifacts: the upper cases (a)-(c) only occur in ours, and the lower cases (d)-(f) occur in both ours and ETCPACK. Block
artifacts are usually distinguishable, but the others are relatively minor. The FLIP maps [Andersson et al. 2020] were generated at p = 33.5 pixels per degree.
©Kodak, UNC GAMMA Lab, Google, and fhernand.

To sum up, compared to block artifacts, the other types of arti-
facts are minor in ETC2 encoding. The FLIP maps in Figure 10 sup-
port that claim. Our T-/H-mode compression reduces visible block
artifacts in many high-contrast regions (Figure 1), thereby making
up for etcpak’s compression quality.
Finally, our compressor shows comparable quality to astcencwith

the fastest setting (Figure 1). Ours produces neither faded colors
(Kodim05) nor ringing artifacts (Kodim20) shown in astcenc. On the
other hand, astcenc achieves almost perfect edge handling and no
color shifts (Small-Char), and its gradients are also slightly better
than those in ETC2 (ISCV2_u2_v4). PSNR/SSIM values do not reveal
these characteristics over different codecs well.

6 CONCLUSIONS AND FUTURE WORK
We have presented two approaches for fast ETC2 compression: an
early compression-mode decision scheme and a new T-/H-mode

compression algorithm. Both approaches exploit the luma differ-
ence in a block for faster processing. With the AVX2 implementa-
tion, we have achieved two to three orders magnitude faster perfor-
mance than the existing high-quality ETC2 compressors that fully
support the ETC2 mode.

One of the limitations of our approach is that it does not af-
fect the ETC1 and EAC compression logic in etcpak. As a result,
when compressing one- or two-channel textures, such as normal
maps or lightmaps, our approach improves neither the compres-
sion quality nor speed of the EAC compression. The high-speed
ETC1 logic in etcpak is the main reason of quality gaps between
ours and other high-quality compressors.Thus, additional improve-
ments over the ETC1 and EAC compression functions would help
to achieve higher-quality compression.

Our current implementation only targets at x86 platforms. We
are interested in extending that to other platforms. First, porting of
our code to ARM Neon will increase its utility in mobile apps that

ACM Trans. Graph., Vol. 39, No. 6, Article 270. Publication date: December 2020.

270:10 • Jae-Ho Nah

require real-time texture compression. Second, efficient ETC2 com-
pression on GPUs is an interesting topic for future work. There are
a few CUDA-accelerated texture encoders, such as the NVIDIA tex-
ture tools exporter [NVIDIA 2020], but all of them do not support
the ETC2 format.We believe that our algorithmwould also be easily
parallelized using CUDA or OpenCL because each block is indepen-
dently compressed. If the GPU implementation provides enough
performance for real-time rendering, we will be able to consider us-
ing the ETC2 codec for streaming G-buffer compression [Kerzner
and Salvi 2014], which can reduce the amount of memory traffic
caused by deferred shading. Finally, if we exploit libraries or lan-
guages for advanced automatic vectorization, such as Enoki [Jakob
2020] or Halide [Ragan-Kelley et al. 2013], we expect not only to
greatly increase the number of supported platforms but also to fur-
ther increase compression performance by utilizing heterogeneous
computing.

REFERENCES
Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, and Kalle

Åströmand Mark D. Fairchild. 2020. FLIP: A Difference Evaluator for Alternating
Images. Proceedings of the ACM on Computer Graphics and Interactive Techniques
(HPG 2020) 3, 2, Article 15 (2020), 23 pages.

Arm Limited. 2016. Mali Texture Compression Tool. https://developer.arm.com/tools-
and-software/graphics-and-gaming/mali-texture-compression-tool/downloads

Arm Limited. 2020. astc-encoder. https://github.com/ARM-software/astc-encoder/
tree/1.x

Binomial LLC. 2020. Basis Universal Supercompressed GPU Texture Codec. https://
github.com/BinomialLLC/basis_universal

David Chait. 2015. Using ASTC Texture Compression for Game Assets. https://developer.
nvidia.com/astc-texture-compression-for-game-assets

Fabrice De Chaumont, Stéphane Dallongeville, Nicolas Chenouard, Nicolas Hervé,
Sorin Pop, Thomas Provoost, Vannary Meas-Yedid, Praveen Pankajakshan, Tim-
othée Lecomte, Yoann Le Montagner, Thibault Lagache, Alexandre Dufour, and
Jean-Christophe Olivo-Marin. 2012. Icy: an open bioimage informatics platform
for extended reproducible research. Nature methods 9, 7 (2012), 690–696.

Marc FauconneauDufresne. 2015. How to create a high quality, fast texture compressor
using ISPC. In Game Developer Conference 2015. https://software.intel.com/sites/
default/files/managed/4a/38/High-Quality_Fast-DX11-Texture-Compression.pdf

Jim Easterbrook, Oliver Grau, and Peter Schubel. 2010. A system for distributed multi-
camera capture and processing. In Proceedings of the 2010 Conference on Visual Me-
dia Production. IEEE, 107–113.

Ericsson. 2018. ETCPACK. https://github.com/Ericsson/ETCPACK
Simon Fenney. 2003. Texture compression using low-frequency signal modulation. In

Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics Hard-
ware. 84–91.

Google Inc. and Blue Shift Inc. 2017. Etc2Comp - Texture to ETC2 compressor. https:
//github.com/google/etc2comp

Wesley Griffin and Marc Olano. 2015. Evaluating texture compression masking effects
using objective image quality assessment metrics. IEEE Transactions on Visualiza-
tion and Computer Graphics 21, 8 (2015), 970–979.

Intel Corp. 2019. Fast ISPC Texture Compressor. https://github.com/GameTechDev/
ISPCTextureCompressor

Konstantine I Iourcha, Krishna S Nayak, and Zhou Hong. 1999. System and method
for fixed-rate block-based image compression with inferred pixel values. US Patent
5,956,431.

Wenzel Jakob. 2020. Enoki: structured vectorization and differentiation on modern
processor architectures. https://github.com/mitsuba-renderer/enoki.

Brano Kemen. 2012. In-Game Video Capture with Real-Time Texture Compression. In
OpenGL Insights, Patrick Cozzi and Christophe Riccio (Eds.). CRC Press, 455–466.
http://www.openglinsights.com/.

Ethan Kerzner and Marco Salvi. 2014. Streaming G-buffer compression for multi-
sample anti-aliasing. In Proceedings of High Performance Graphics 2014. 1–7.

Khronos Group. 2019. Khronos Data Format Specification, Version 1.3, Revision 1. https:
//www.khronos.org/registry/DataFormat/specs/1.3/dataformat.1.3.pdf

Evgeny Kluev. 2014. Stack Overflow - Horizontal minimum and maximum using
SSE. https://stackoverflow.com/questions/22256525/horizontal-minimum-and-
maximum-using-sse

Pavel Krajcevski, Adam Lake, and Dinesh Manocha. 2013. FasTC: accelerated fixed-
rate texture encoding. In Proceedings of the ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics and Games. 137–144.

Jon Leech and Benj Lipcha. 2019. OpenGL© ES Version 3.0.6 (November 1, 2019). https:
//www.khronos.org/registry/OpenGL/specs/es/3.0/es_spec_3.0.pdf

Yoseph Linde, Andres Buzo, and Robert Gray. 1980. An algorithm for vector quantizer
design. IEEE Transactions on Communications 28, 1 (1980), 84–95.

Colt McAnlis. 2016. Building a blazing fast ETC2 compressor. https://medium.com/
@duhroach/building-a-blazing-fast-etc2-compressor-307f3e9aad99#.acqks0pzct

Microsoft. 2018. Texture Block Compression in Direct3D 11. https://docs.microsoft.com/
en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11

Jae-Ho Nah. 2020. QuickETC2: How to finish ETC2 compression within 1 ms. In ACM
SIGGRAPH 2020 Talks. Article 4.

Jae-Ho Nah, Byeongjun Choi, and Yeongkyu Lim. 2018. Classified texture resizing for
mobile devices. In ACM SIGGRAPH 2018 Talks. Article 73.

NVIDIA. 2020. NVIDIA Texture Tools Exporter. https://developer.nvidia.com/nvidia-
texture-tools-exporter

Jorn Nystad, Anders Lassen, Andy Pomianowski, Sean Ellis, and Tom Olson.
2012. Adaptive scalable texture compression. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on High-Performance Graphics. 105–114.

Daniel Oom. 2016. Real-Time Adaptive Scalable Texture Compression for the Web. Mas-
ter’s thesis. Chalmers University of Technology.

T. Paltashev and I. Perminov. 2014. Texture Compression Techniques. Scientific Visu-
alization 6, 1 (2014), 106–146.

Daniel Pohl, Daniel Jungmann, Bartosz Taudul, Richard Membarth, Harini Hariharan,
Thorsten Herfet, and Oliver Grau. 2017. The next generation of in-home streaming:
Light fields, 5K, 10 GbE, and foveated compression. In 2017 Federated Conference on
Computer Science and Information Systems (FedCSIS). IEEE, 663–667.

Jonathan Ragan-Kelley, Connelly Barnes, AndrewAdams, Sylvain Paris, FrédoDurand,
and Saman Amarasinghe. 2013. Halide: a language and compiler for optimizing par-
allelism, locality, and recomputation in image processing pipelines. ACM SIGPLAN
Notices 48, 6 (2013), 519–530.

Mark Segal and Kurt Akeley. 2013. The OpenGL© Graphics System: A Specification
(Version 4.3 (Core Profile) - February 14, 2013). https://www.khronos.org/registry/
OpenGL/specs/gl/glspec43.core.pdf

Jacob Ström and Tomas Akenine-Möller. 2005. iPACKMAN: High-quality, low-
complexity texture compression for mobile phones. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics Hardware. 63–70.

Jacob Ström and Martin Pettersson. 2007. ETC 2: texture compression using invalid
combinations. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics Hardware. 49–54.

Bartosz Taudul and Daniel Jungmann. 2020. etcpak. https://bitbucket.org/wolfpld/
etcpak/src/master

Unity Technologies. 2017. Unity User Manual (2017.3). https://docs.unity3d.com/2017.
3/Documentation/Manual/class-EditorManager.html

Alex Voica. 2013. Taking texture compression to a new dimension with PVRTC2. https://
www.imgtec.com/blog/pvrtc2-taking-texture-compression-to-a-new-dimension

ZhouWang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on Image
Processing 13, 4 (2004), 600–612.

A SUPPLEMENTAL MATERIALS
We attach a supplemental document including the actual images of
the entire set and a detailed qualitative analysis table. We also at-
tach a diff patch file, which can be directly applied to etcpak 0.7 (the
parent commit is 5c1021b), and its executables compiled for Linux
and Windows. We hope that these attachments could be helpful to
software developers and graphics researchers.

ACKNOWLEDGMENTS
We appreciate the reviewers who gave us a lot of constructive sug-
gestions. We also thank the authors of etcpak and ETCPACK who
have opened their source code to the public. Finally, we are grate-
ful to Jiwoon Hwang, Yongbong Choi, and Seongeun Soh for their
support.

ACM Trans. Graph., Vol. 39, No. 6, Article 270. Publication date: December 2020.

https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-texture-compression-tool/downloads
https://developer.arm.com/tools-and-software/graphics-and-gaming/mali-texture-compression-tool/downloads
https://github.com/ARM-software/astc-encoder/tree/1.x
https://github.com/ARM-software/astc-encoder/tree/1.x
https://github.com/BinomialLLC/basis_universal
https://github.com/BinomialLLC/basis_universal
https://developer.nvidia.com/astc-texture-compression-for-game-assets
https://developer.nvidia.com/astc-texture-compression-for-game-assets
https://software.intel.com/sites/default/files/managed/4a/38/High-Quality_Fast-DX11-Texture-Compression.pdf
https://software.intel.com/sites/default/files/managed/4a/38/High-Quality_Fast-DX11-Texture-Compression.pdf
https://github.com/Ericsson/ETCPACK
https://github.com/google/etc2comp
https://github.com/google/etc2comp
https://github.com/GameTechDev/ISPCTextureCompressor
https://github.com/GameTechDev/ISPCTextureCompressor
http://www.openglinsights.com/
https://www.khronos.org/registry/DataFormat/specs/1.3/dataformat.1.3.pdf
https://www.khronos.org/registry/DataFormat/specs/1.3/dataformat.1.3.pdf
https://stackoverflow.com/questions/22256525/horizontal-minimum-and-maximum-using-sse
https://stackoverflow.com/questions/22256525/horizontal-minimum-and-maximum-using-sse
https://www.khronos.org/registry/OpenGL/specs/es/3.0/es_spec_3.0.pdf
https://www.khronos.org/registry/OpenGL/specs/es/3.0/es_spec_3.0.pdf
https://medium.com/@duhroach/building-a-blazing-fast-etc2-compressor-307f3e9aad99#.acqks0pzct
https://medium.com/@duhroach/building-a-blazing-fast-etc2-compressor-307f3e9aad99#.acqks0pzct
https://docs.microsoft.com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11
https://docs.microsoft.com/en-us/windows/win32/direct3d11/texture-block-compression-in-direct3d-11
https://developer.nvidia.com/nvidia-texture-tools-exporter
https://developer.nvidia.com/nvidia-texture-tools-exporter
https://www.khronos.org/registry/OpenGL/specs/gl/glspec43.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec43.core.pdf
https://bitbucket.org/wolfpld/etcpak/src/master
https://bitbucket.org/wolfpld/etcpak/src/master
https://docs.unity3d.com/2017.3/Documentation/Manual/class-EditorManager.html
https://docs.unity3d.com/2017.3/Documentation/Manual/class-EditorManager.html
https://www.imgtec.com/blog/pvrtc2-taking-texture-compression-to-a-new-dimension
https://www.imgtec.com/blog/pvrtc2-taking-texture-compression-to-a-new-dimension

	Abstract
	1 Introduction
	1.1 Main results

	2 Related Work
	2.1 ETC1/2
	2.2 ETC compressors
	2.3 Other texture compression formats

	3 Early Compression-Mode Decision
	4 Luma-based T-/H-Mode Compression Algorithm
	4.1 Analysis of traditional T-/H-mode compression
	4.2 Our approach

	5 Experiments and Results
	5.1 Test setup
	5.2 Quantitative analysis of the results
	5.3 Qualitative analysis of the results

	6 Conclusions and Future Work
	References
	A Supplemental Materials
	Acknowledgments

