
MobiRT: An Implementation of OpenGL ES-based

CPU-GPU Hybrid Ray Tracer for Mobile Devices

Jae-Ho Nah, Yoon-Sig Kang,

Kwang-Jo Lee, Shin-Jun Lee,

Tack-Don Han, Sung-Bong Yang

Yonsei University, Korea

• Motivation and goals

• Problems and solutions

• Performance

• Secondary rays

• Texture mapping

• Experimental results

• Conclusions and future work

Contents

• Motivation and goals

• Problems and solutions

• Performance

• Secondary rays

• Texture mapping

• Experimental results

• Conclusions and future work

Contents

• 3D user interfaces (UI)

• A key application of visualization on mobile devices

• The difficulties of 3D UI design

• Complex Shader programming

• Low rendering performance of mobile GPUs

Motivation

• Ray tracing [Whitted 1980]

• A technique for generating an image by tracing the paths of

lights

• Widely used for off-line rendering

• Ray tracing can be a solution for 3D UI

• naturally supports global illumination effects

generates high-quality images & simplifies Shader

programming

• Performance is inversely proportional to the pixel size.

• supports flexible primitive types.

Motivation

• Implement an OpenGL ES-based CPU-GPU hybrid ray

tracer

• Support full Whitted ray tracing

(reflections, refractions, hard shadows)

• Support dynamic scenes

Goals

• Motivation and goals

• Problems and solutions

• Performance

• Secondary rays

• Texture mapping

• Experimental results

• Conclusions and future work

Contents

• Performance

• Mobile GPUs have much poorer performance than

desktop GPUs

• Secondary rays

• OpenGL-ES 2.0 doesn’t support multiple render targets

(MRTs) only in the extension specification

• Management of the ray tree is limited on the GPU.

• Texture mapping

• Ray tracing requires access of the entire scene data.

• # of textures in the entire scene

> # of multi-texture units in the GPU

Problems to Solve

• Exploit the availability of

CPU and GPU architectures

• Kd-tree build on CPU

- Binned SAH approximation

[Shevstov et al. 2007]

• Ray traversal on GPU

- Short-stack algorithm

[Horn et al. 2007]

Solution for Performance

• 32-bit compact output format

• Ray traversal kernel

- 24bits : primitive index

- 8bits : shadow results

• Shading kernel : 32bit RGBA

• CPU manages

- Ray tree for secondary rays

- Hit points, normals, texture

coordinates for shading

Solution for Secondary Rays

• Apply texture atlases

[NVIDIA 2004]

• 16 textures (<=512x512 size)

 1 global texture

(2,048x2,048 size)

• Support variable size textures

Solution for Texture Mapping

• Motivation and goals

• Problems and solutions

• Performance

• Secondary rays

• Texture mapping

• Experimental results

• Conclusions and future work

Contents

Test Setup

• AMD OpenGL-ES emulator 1.4

• 2.9GHz AMD Athlon-X2, 2GB RAM, NVIDIA Geforce 9800GT

• Benchmark scenes

Toaster (11K tris.) Marbles

(8K tris.)

Fish (1.4K tris.)

Video

• AMD OpenGL-ES emulator 1.4

• 2.9GHz AMD Athlon-X2, 2GB RAM, NVIDIA Geforce 9800GT

• Benchmark scenes

Results

• We expect that the MobiRT will show 1-5 FPS on real mobile

devices.

• Motivation and goals

• Problems and solutions

• Performance

• Secondary rays

• Texture mapping

• Experimental results

• Conclusions and future work

Contents

• The implementation of an OpenGL ES-based CPU-GPU hybrid

ray tracer

• CPU : kd-tree build and management of the ray tree

• GPU : kd-tree traversal, intersection tests, and shading

• Supports full Whitted ray tracing of dynamic scenes.

• Future work

• Implementation on real mobile devices

• Using OpenCL for faster and more efficient ray tracing

Conclusions and Future Work

• This work was supported by Samsung Electronics Co., Ltd.

Acknowledgements

Q&A

