
Ordered Depth-First Layouts for Ray Tracing

Jae-Ho Nah1, Jeong-Soo Park1,Jin-Woo Kim1

Chanmin Park2, Tack-Don Han1

Yonsei University, Korea1

Samsung Electronics, Korea2

• Background & Related Work

• Proposed method : Ordered depth-first layout (ODFL)

• Comparison with depth-first layout

• Tree construction and traversal for ODFL

• Experimental results

• Conclusions

Contents

• Background & Related Work

• Proposed method : Ordered depth-first layout (ODFL)

• Comparison with depth-first layout

• Tree construction and traversal for ODFL

• Experimental results

• Conclusions

Contents

• Kd-tree

• Axis-aligned BSP(binary space partitioning) tree

• Widely used for computer graphics (e.g. ray tracing)

• Ray tracing with kd-trees

• Requires many visits to nodes.

• Important to design cache-efficient layouts

Background

0

1

2 3

4

5 6

• Depth-first layouts [PH10]

• Basic tree representation from

recursive tree building

• Locality between the parent

and the left child node

• One pointer per node

Related Work

These images are excerpted from [Hav 99].

• Subtree layouts [Hav99]

• Made by clustering nodes

• Locality between the parent

and two child nodes

• Two pointers per node

(ordinary subtree)

• Background & Related Work

• Proposed method : Ordered depth-first layout (ODFL)

• Comparison with depth-first layout

• Tree construction and traversal for ODFL

• Experimental results

• Conclusions

Contents

• Goals

• Improve the cache efficiency of depth-first layouts

• No additional memory space (8 bytes per node)

• Our approach

• The probability of a ray intersecting with a node is

proportional to its surface area. [MB90]

• Change the arrangement criterion of child nodes

: geometric position surface area

Proposed Method

• Child nodes are arranged by their geometric position [PH10]

(left node ≤ split plane ≤ right node)

Traditional Depth-First Layout

41

0

5

3
8

2

109

6 7

10 2 3 54 6 7 98 10

0

85

9

2

10

4

3

76

1

Tree

Cache

• Child nodes are arranged by their surface area (SA)

(left node > right node)

Ordered Depth-First Layout (ODFL)

18

5

9
2

10

0

34

6 7

10 2 3 54 6 7 98 10

0

1 8

5 92 10

43 76

Tree

Cache

• Tree construction

• SA values is obtained by a surface area heuristic (SAH)

• Add a 1-bit reorder flag (embedded into a 8-byte node)

• Tree Traversal

• For front-to-back traversal, the reorder flag is referenced

Tree Construction and Traversal for ODFL

• Background & Related Work

• Proposed method : Ordered depth-first layout (ODFL)

• Comparison with depth-first layout

• Tree construction and traversal for ODFL

• Experimental results

• Conclusions

Contents

• Whitted ray tracer

• Single-ray recursive tracing

• Recursion depth 4

• SAH-based tree build

• Benchmark scenes (512x512 resolution)

Kitchen Fairy Sponza

Experimental Setup

• Dinero IV cache simulator[EH98]

• 8KB size

• 4-way set associative

• 64byte block size

Results

97.0%

81.9%

93.1%

75.8%
69.4%

83.2%

0%

20%

40%

60%

80%

100%

Kitchen Fairy Sponza

Required Memory Bandwidth (MB/s)

D F L

SUBTREE

O D F L

• ODFL reduced the required memory bandwidth by

• 15-30% compared with the depth-first layout

• 10-21% compared with the ordinary subtree layout.

Results

• 40% less than the ordinary subtree layout

• DFL/ODFL : 8 nodes per 64B cache block

• Ordinary subtree : 5 nodes per 64B cache block

Memory Footprint (MB)

0

5

10

15

20

25

Kitchen Fairy Sponza

Subtree

DFL/ODFL

• Background & Related Work

• Proposed method : Ordered depth-first layout (ODFL)

• Comparison with depth-first layout

• Tree construction and traversal for ODFL

• Experimental results

• Conclusions

Contents

• Maximize parent-child locality using simple node ordering

• Platform independent

• Widely applicable to ray tracers based on CPUs, GPUs,

and dedicated hardware

• Can be useful for other applications utilizing depth-first search

• Collision detection, photon mapping, etc.

Conclusions

• This work was supported by Samsung Electronics Co., Ltd

Acknowledgements

Q&A

