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Figure 1: A captured image of VR stereo rendering in the GFXBench T-Rex scene. By exploiting a similarity between the images of the
left and right views, our novel tile traversal order can decrease memory bandwidth requirement for texture mapping by up to 30% and can
increase texturing performance by up to 8% when rendering the scene.

Abstract

With increasing demands of virtual reality (VR) applications, ef-
ficient VR rendering techniques are becoming essential because
VR stereo rendering requires increased computational costs to sep-
arately render views for the left and right eyes. To reduce the ren-
dering cost in VR applications, we present a novel traversal order
for tile-based mobile GPU architectures, called the Z2 traversal or-
der. In tile-based mobile GPU architectures, a tile traversal order
that maximizes spatial locality can increase the GPU cache effi-
ciency. For VR applications, our approach improves the traditional
Z-curve order; we render two screen tiles in the left and right views
by turns or simultaneously, as a result, we can exploit spatial local-
ity between the two tiles. To evaluate our approach, we conducted a
trace-driven hardware simulation using Mesa and a hardware simu-
lator. The experimental results show that the Z2 traversal order can
reduce external memory bandwidth requirements and can increase
rendering performance.
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1 Introduction

Recent technical advances of head-mounted displays (HMDs) and
GPUs have brought an explosion in the virtual reality (VR) market.
As a result, a wide range of VR applications has been developed:
Games, 360◦ video, simulations, social media, and so on. In these
VR applications, immersive visual experiences are very important.
Thus, VR devices usually need to provide a high resolution screen
(e.g., FHD to UHD) with high refresh rates (e.g., 60-120Hz). Addi-
tionally, HMDs require separately rendered images of left and right
eyes, and this stereo VR rendering can increase the number of draw
calls by up to twice. Therefore, efficient VR rendering techniques
are required for realistic VR experiences.

We focus on efficient GPU hardware architectures for VR appli-
cations. Currently most mobile GPUs (e.g., Qualcomm Adreno,
ARM Mali, and Imagination Technologies PowerVR) are based
on tile-based GPU architectures to minimize off-chip memory ac-
cesses. These architectures divide the entire screen into multiple
tiles by adding the tiling stage between vertex and fragment shad-
ing, and each shader core performs fragment shading of geometry
in each screen tile with a tile buffer. Because the number of tiles is
much higher than the number of shader cores, there can be various
tile traversal orders and are needs for efficient tile traversal orders
which increase rendering performance by utilizing spatial locality.
That also means there is a room to improve VR rendering perfor-
mance by choosing a tile traversal order dedicated to VR applica-
tions.

In this paper, we present a novel tile traversal order called the Z2

traversal order. This traversal order is based on the traditional Z-
curve order [Morton 1966], but we improve that for VR stereo ren-
dering in two ways. The left-right tile assign version (Z2 LRTA)
assigns tiles in the left and right screens to a shader core by turns,
and the simultaneous tile access version (Z2 STA) assigns two tiles
in the left and right screens to a shader core simultaneously and
performs interleaved access to the primitive lists of the two tiles.
Thanks to similarity of the left and right screens, the Z2 traversal
order can increase spatial locality compared to traditional traver-
sal orders. In the point of view of simultaneous rendering of the
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left and right views, the idea of our traversal order was inspired by
Hasselgren et al.’s multi-view rasterization architecture [Hasselgren
and Akenine-Möller 2006]. However, there is a difference between
them; Hasselgren et al. focused on how to efficiently rasterize tri-
angles to multiple views, in contrast, we focus on how to efficiently
map shader cores to screen tiles.

We have built a GPU simulation environment on Mesa 11.0.3 [Paul
and Whitwell 2015] to evaluate the effect of the Z2 traversal order.
This simulation environment provides an analysis of texture cache
access patterns. This analysis includes texture cache hit rates, mem-
ory bandwidth requirements for texture mapping, and the utilization
of a texture mapping unit on the simulator. According to the exper-
imental results on the GFXBench T-Rex scene (Figure 1), the Z2

traversal order can reduce memory bandwidth requirements for tex-
ture mapping by up to 30% and can increase texturing performance
by up to 8%, compared to the traditional Z-curve order.

2 Background and Related Work

2.1 Tile-based GPU Architectures and Tile Traversal
Order

Tile-based GPU architectures have been widely adopted to
bandwidth-limited mobile platforms. The detailed hardware archi-
tectures are differently implemented by each GPU vendor, but those
architectures have a common feature: splitting the entire rendering
stage by dividing the screen into small tiles and redistributing prim-
itives into multiple shader cores using the primitive list in each tile.
This redistribution is performed between vertex and pixel process-
ing, so the tile-based GPU architectures are also known as the sort-
middle architectures [Molnar et al. 1994]. Because depth and color
accesses for fragment shading can be performed using a small tile
buffer in the architectures, the architectures can reduce the amount
of power-hungry DRAM accesses and that is why the architectures
are suitable for mobile devices. A great overview of tile-based ren-
dering is described in Harris [2014].

After the tiling stage, tiles and their primitive lists are distributed
into multiple shader cores. If a tile traversal order is cache friendly,
then it can increase rendering performance because GPU architec-
tures usually include multi-level cache hierarchies. A scanline or-
der is the simplest form, the Z-curve order [Morton 1966; Clarberg
et al. 2013] is a more sophisticated form to increase spatial local-
ity, and a zig-zag pattern [Ellis et al. 2015] is an alternative of the
Z-curve order.

2.2 VR Acceleration Techniques

A brute-force approach for VR stereo rendering is to separately
render scenes twice for the left and right views. This approach is
simple but can increase the number of draw calls by twice. Thus,
recent studies try to reduce the redundant CPU/GPU workload in
that case. An alternative approach is shader multiview (also known
as stereo instancing) [Reed and Sancho 2015; Wilson 2015; Jo-
hansson 2016]; by exposing a ViewID variable to shaders, a GPU
can separately handle shader threads for each view without in-
creased draw-call overhead. This method can be implemented
on current generation GPUs with recent OpenGL/OpenGL ES
extensions (GL OVR multiview2, GL NV viewport array2, and
GL ARB shader viewport layer array). More aggressive, effective
approach is shading reuse [Hasselgren and Akenine-Möller 2006;
Reed and Sancho 2015]; by reusing fragment shading results on
the left view for the right view, this approach can reduce frag-
ment shading cost by up to half. However, it can degrade image
quality because pixel values on the right view are approximately

evaluated on the texture space and it is particularly problematic on
view-dependent shading. Another approach is to broadcast draw
calls across multiple GPUs [Reed and Sancho 2015; Vlachos 2016;
AMD 2015; NVIDIA 2016]. This approach can utilize full power
of multiple GPUs connected by the SLI or Crossfire interfaces.

Another research direction for VR rendering is to reduce the
number of shaded fragments of each view. Vlachos [2015] pre-
sented a stencil mesh to cull hidden area after warping in advance.
Foveated rendering [Guenter et al. 2012] is a gaze-contingent multi-
resolution rendering technique. By using eye trackers, this tech-
nique lowers image quality in the periphery (outside of the fovea)
to increase rendering performance. The image quality of the pe-
ripheral area can be improved by additional blur or sharpen post-
processing [Patney et al. 2016]. NVIDIA multi-resolution shading
[NVIDIA 2016] allows multiple scaled viewports in a single pass,
as a result, the edges of the screen distorted by warping and lens dis-
tortion can be rendered at reduced resolution without apparent loss
of image quality. It can also be used for fixed foveated rendering
[Vlachos 2016].

3 Z2 Tile Traversal Order

In this section, we describe our novel Z2 tile traversal order. An
important point when selecting the tile traversal order is how much
increase spatial locality; if data from similar texture addresses are
referenced again within a short period time, there will be a high
possibility of maintaining the texture data in cache hierarchies.

Our observation is that the images of the left and right views in
VR stereo rendering usually look similar as illustrated in Figure 1.
This is because a same scene is rendered with two slightly differ-
ent views. Therefore, if we are able to render two screen tiles in
the left and right views by turns or simultaneously, it will increase
cache locality. Our Z2 traversal order utilizes this feature for VR
stereo rendering. Expect for that, the traversal order in each view is
fundamentally the same as the Z-curve order.

We introduce two different traversal orders as depicted in Figure 2:
The left-right tile assign version (Z2 LRTA) and the simultaneous
tile access version (Z2 STA). Z2 LRTA traverses the tiles in the left
and right screens by turns. When multiple shader cores share an
L2 cache, this traversal order can increase the L2 cache hit rates
by assigning different shader cores to the left and right screen tiles,
respectively. This traversal order can be simply implemented on
the Z-curve-order-based architectures without increase of hardware
complexity.

In contrast to Z2 LRTA, Z2 STA fetches two tiles in the left and
right screens simultaneously, so two triangle lists of the two tiles
are passed to a single shader core. After that, triangles in the left
and right triangle lists are rendered by turns; in other words, after
a triangle in the left screen tile is rendered, a triangle in the right
screen tile is rendered. If the two screen tiles consist of very similar
triangles (e.g., regions in the far distance), Z2 LRTA can increase
not only spatial locality but also temporal locality because there is a
high possibility of the same triangle is fetched again while the two
tiles are rendered. However, this traversal order has a disadvantage
compared to Z2 LRTA; Z2 STA requires double-sized tile memory
because two screen tiles should be rendered concurrently, and this
double-sized tile memory will decrease area efficiency of a GPU.

Note that both Z2 STA and Z2 LRTA require the use of the shader
multiview techniques and extensions mentioned in Section 2.2. If
the brute-force approach with duplicated draw calls is used, there is
no clue how to obtain the geometry lists of the left and right views
simultaneously. Thus, our traversal order can be enabled only if the
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Figure 2: Traversal order examples of 32 tiles in VR stereo rendering (top) and tile assignment examples between the tiles and a two-core
GPU (bottom).

tiling stage can sort all geometry of the left and right views together
in a single render pass.

4 Experimental Results

4.1 Experimental Setup

We have built a texture-mapping simulation environment on Mesa
11.0.3 [Paul and Whitwell 2015] to verify the effectiveness of the
Z2 order. Because Mesa is a software OpenGL renderer based on
immediate-mode rendering, we make a virtual grid to generate tex-
ture access traces on tile-based GPU architectures. After that, we
store texture addresses into the corresponding grid cells whenever
texture accesses occur. The size of a grid cell is 16×16 because
16×16 or 32×32 tile sizes are usually used in modern tile-based
GPUs (e.g., Mali and PowerVR). After a frame is rendered, the
trace file generated in the modified Mesa is fed to our in-house
cache simulator in order to measure cache hit/miss rates and mem-
ory bandwidth requirements. We have also built a simple hardware
simulator to measure utilization of a texture mapping unit (TMU).
In this simulation, the texture pipeline is stalled when a cache miss
occurs, and the miss penalty of L1 and L2 caches is 20 and 200
cycles, respectively.

For hardware configurations, we assume that two GPU shader cores
share an L2 cache as illustrated in Figure 3; we believe this config-
uration is reasonable because usually two to four GPU cores are
connected with an L2 cache in modern tile-based GPUs (e.g., Mali
T600-T800 series and PowerVR 6-7 series). The size of each L1
cache is configured to 8 and 16 KB, and the L2 cache size is config-
ured to 128 and 256 KB. Additionally, both caches are commonly
configured to four-way set associativity with a 64-byte block size.
If the two shader cores concurrently request the same memory ad-
dress, we assume that the texture data from the requests are broad-
cast to the shader cores later.

The rendered scene is GFXBench T-Rex as depicted in Figure 1.
For VR stereo rendering, we used Oculus VR library with a 100-
degree field-of-view (FOV). All textures in the scene were com-
pressed by DXT1. The screen resolution of each view is 960×1080.

4.2 Results and Analysis

Table 1 summarizes the experimental results. This table includes
L1 cache miss rates, L2 cache miss rates, and TMU utilization.
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According to the results in the table, Both Z2 LRTA and Z2 STA
reduce L1 and L2 cache misses compared to the Z-curve order, as
a result, TMU utilization also increases. In a texture-heavy scene,
overall GPU performance is bounded by texture mapping perfor-
mance. In this case, Z2 LRTA and Z2 STA can increase overall
rendering performance by up to 7% and 8%, respectively. Regard-
less of the cache configurations, Z2 STA always achieves slightly
higher TMU utilization than Z2 LRTA.

Figure 3 compares external memory bandwidth requirements of
each tile traversal order. Note that the values in Figure 3 repre-
sent only bandwidth requirements for texture mapping because a
tile traversal order is not directly related to off-chip memory band-
width for fetching other types of data, such as geometry, depth, and
color data. According to the results in the graph, Z2 LRTA and Z2

STA can reduce the memory bandwidth requirements for texturing
by 21-30% and 23-30%, respectively. This is possible by decreas-
ing miss rates of the L1 and L2 cache hierarchies.

The most optimal tile traversal order in a scene with a perfect coher-
ence between the left and right views will not generate any cache
misses in rendering the right view, and in this ideal case, a reduction
in memory bandwidth requirements will be 50%. Because our sim-



Table 1: Experimental results in the T-Rex scene. The traditional Z-curve order, the Z2 LRTA order, and the Z2 STA order are compared in
this table, and lower cache miss rates and higher TMU utilization are better results. TMU is an abbreviation of a texture mapping unit.

Cache Size L1 Cache Miss Rate (%) L2 Cache Miss Rate (%) TMU Utilization (%)
L1 L2 Z-curve Z2 LRTA Z2 STA Z-curve Z2 LRTA Z2 STA Z-curve Z2 LRTA Z2 STA

8 KB 128 KB 2.39 2.37 2.38 11.68 9.31 8.98 50.49 (1.00×) 53.43 (1.06×) 53.75 (1.06×)
16 KB 128 KB 1.70 1.65 1.61 16.46 13.39 13.27 54.27 (1.00×) 57.95 (1.07×) 58.59 (1.08×)
8 KB 256 KB 2.39 2.37 2.38 6.41 4.54 4.49 57.01 (1.00×) 59.94 (1.05×) 59.95 (1.05×)

16 KB 256 KB 1.70 1.65 1.61 9.03 6.55 6.63 61.89 (1.00×) 65.66 (1.06×) 66.03 (1.07×)

ple interleaved tile traversal orders achieve a memory-bandwidth
reduction up to 30% in a common game-like scene, we believe that
our approach is quite efficient.

5 Conclusions and Future Work

We have presented two variations of the traditional Z-curve order
which are specially designed for VR stereo rendering. Z2 LRTA
traverses the left and right screen tiles by turns and is advantageous
in terms of hardware complexity. Z2 STA fetches the two tiles si-
multaneously in a single shader core and can maximize cache lo-
cality. We built a simulation environment on Mesa to evaluate the
proposed tile traversal order, and the experimental results show that
both approaches can decrease cache miss rates and can increase
TMU utilization compared to the traditional Z-curve order. Be-
cause our tile traversal order can be easily implemented on existing
tile-based GPU architectures and are orthogonal to other VR accel-
eration techniques, we believe it can be useful for a wide range of
VR applications.

As future work, we would like to experiment more with various
scenes and hardware architectures. Disparity manipulation tech-
niqeus for specific graphics effects (e.g., gloss depiction [Templin
et al. 2012]) will affect coherences between the left and right views,
so we would like to analyze the effect of our approach in those
cases. Additionally, we believe that our interaved Z2 traversal or-
der can be used in not only rasterization GPUs but also ray-tracing
GPUs. In case that camera rays are shot using the Z-curve order in
a ray tracer [Nah et al. 2014], our approach can be applicable to the
ray tracer for VR extension.
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