

Z² Traversal Order for VR Stereo Rendering on Tile-based Mobile GPUs

Jae-Ho Nah, Yeongkyu Lim, Sunho Ki, and Chulho Shin

LG Electronics

SA2016.SIGGRAPH.ORG

INTRODUCTION

SA2016.SIGGRAPH.ORG

VIRTUAL REALITY

- Explosion in VR market
 - Thanks to technical advances of HMDs and GPUs
 - A wide range of applications

Experience

- High computational costs for VR rendering
 - High screen resolution (e.g., FHD to UHD)
 - High frame/refresh rates (e.g., 60-120Hz)
 - Stereo rendering for the left and right eyes
- Thus, efficient VR rendering techniques are required for realistic VR experiences!

MAIN CONTRIBUTIONS OF OUR WORK

- Focus on efficient GPU H/W architectures for mobile VR applications
- Novel cache-efficient tile traversal orders for VR rendering
 - Interleaved version of the traditional Z-order curve [Morton 1966]
 - Two variants:
 Z² LRTA (left-right tile assignment) & Z² STA (simultaneous tile access)
- Implementation of a simulation environment
 - Mesa OpenGL renderer + Oculus VR library + in-house H/W simulator

BACKGROUND AND RELATED WORK

SA2016.SIGGRAPH.ORG

Brute-force approach

• 2X draw calls are required

• Shader multiview [Reed and Sancho, GDC 2015]

- API overhead reduction
- OpenGL extensions (e.g., GL_OVR_multiview2)

• Shading reuse [Hasselgren and Akenine-Möller, EGSR 2006]

- Instead of exact PS evaluation, approximate PS evaluation is performed on the texture space for the right view (or multiple views)
- Aggressive & efficient for reducing PS costs
- Possibility of image quality degradation: problematic on view-dependent shading (e.g., specular highlights)

• VR SLI/CrossFire

- NVIDIA VRWorks (2016) & AMD LiquidVR (2015)
- Left and right screens are distributed into two or more GPU cards connected by the SLI or CrossFire interface

TECHNIQUES FOR REDUCING SHADED FRAGMENTS OF EACH VIEW

- Foveated rendering [Guenter et al., TVCG 2012]
 - High res. image in the fovea
 - Low res. image in the periphery
- Stencil mesh [Vlachos, GDC 2015]
 - Cull area hidden by warping in advance
- Multi-resolution shading [NVIDIA 2016]
 - Low res. image in the edges of the screen distorted by warping and lens distortion

TILE-BASED GPU ARCHITECTURES AND TILE TRAVERSAL ORDERS

• Tile-based GPU architectures

Frame Buffer

- The choice of most mobile GPUs: Adreno, Mali, and PowerVR
- Aiming at minimizing external memory accesses by using a local tile buffer
- // # of tiles > # of GPU cores \rightarrow various traversal orders can exist

TILE-BASED GPU ARCHITECTURES AND TILE TRAVERSAL ORDERS

- Tile traversal orders
 - Cache-friendly traversal order can increase GPU performance
 - Representative examples

Scanline order

Z-order curve [Morton 1966]

Zig-zag pattern [Ellis et al. 2015]

Z² TILE TRAVERSAL ORDER

SA2016.SIGGRAPH.ORG

OUR OBSERVATION

 The left and right views are usually similar each other; binocular disparity is not very high

Three Cardboard games: VR Tank Training, Hang Gliding, and Swivel Gun! Log Ride

- Interleaved tile traversal between the left and right views can increase texture cache efficiency
 - This idea was inspired by Hasselgren and Akenine-Möller [2006]
- Our main idea: Z-order curve + left-right interleaving

Z-ORDER CURVE

Z² LRTA SIGGRAPH (LEFT-RIGHT TILE ASSIGNMENT)

ASIA 2016

MACAO

Z² STA (SIMULTANEOUS TILE ACCESS)

SIGGRAPH ASIA 2016

MACAO

PREREQUISITE FOR Z² ORDER

- Use of **shader multiview** extensions is required
 - Brute-force case: no clue how to obtain the geometry lists of the left and right views simultaneously
 - Our traversal order can be enabled **only if** the tiling stage can sort all geometry of the left and right views together in a single render pass

EXPERIMENTS AND RESULTS

SA2016.SIGGRAPH.ORG

SIMULATION ENVIRONMENT

EXPERIMENTAL SETUP

- H/W assumptions in our experiment
 - MP2 GPU configuration:
 - two L1 caches (8-16KB) and an L2 cache (128-256KB)
 - L1 and L2 miss penalties: 20 and 200 cycles, respectively
 - The texture pipeline is stalled when a cache miss occurs
 - 16×16 tile size
- Test scene
 - GFXBench T-Rex rendered with Oculus VR library
 - Resolution: 960×1080×2
 - DXT1 compressed textures

Lower is better

 Both Z² LRTA and Z² STA show slightly lower L1 cache miss rates than Zorder curve

Lower is better

L2 Cache Miss Rate (%)

- Z² LRTA considerably reduces L2 cache miss rates
- Z² STA reduces the miss rates further in most cases

Lower is better

Memory Bandwidth Requirements for Texture Mapping (MB/frame)

- Z² LRTA and Z² STA reduce memory traffic by 21-30%
- Z² STA shows slightly better results than Z² LRTA

Higher is better

 Z² LRTA and Z² STA can achieve 5-8% performance gain over Z-order curve in texture-heavy scenes

WRAP UP

SA2016.SIGGRAPH.ORG

CONCLUSIONS AND FUTURE WORK

- Two variations of the Z-order curve for tile-based GPUs
 - Specially designed for VR stereo rendering
 - Z² LRTA simpler implementation and no area overhead
 - Z² STA higher efficiency
 - Orthogonal to other VR acceleration techniques
- Future work
 - Experiments in more scenes
 - Investigation on the effects of disparity manipulation techniques (e.g., gloss depiction [Templin et al., TOG 2012])
 - Extension to ray tracers using Z-order curve al., TOG 2014])

(e.g., RayCore [Nah et

ACKNOWLEDGEMENTS

Anonymous reviewers Byeongjun Choi Jinhong Park Kishonti Ltd. (GFXBench)

CONTACT INFORMATION

Jae-Ho Nah <u>nahjaeho@gmail.com</u>

Yeongkyu Lim postrain70@gmail.com

SA2016.SIGGRAPH.ORG

