
TexSR: Image Super-Resolution for High-Quality Texture
Mapping

Jae-Ho Nah
Sangmyung University
Seoul, South Korea

jaeho.nah@smu.ac.kr

Hyeju Kim
Sangmyung University
Seoul, South Korea

hyeju724@naver.com

Single-image 

super-

resolution

ASTC 

compression

KTX

Post-color 

correction

High-

resolution 

textures

Low-

resolution 

textures

Renderer

Figure 1: The process of our texture super-resolution. ©Crytek.

ABSTRACT
We introduce an image super-resolution technique for high-quality
texture mapping in this poster. We first get upscaled textures from
an existing image super-resolution (SR) method. We then perform
a post-color correction algorithm to restore color tones and details
lost in the SR algorithm. Finally, we compress the textures with
variable compression ratios to reduce storage and memory over-
heads caused by the increased resolution. As a result, TexSR can
improve the image quality of a state of the art, Real-ESRGAN.
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1 INTRODUCTION
With the increasing number of high-resolution (up to 8K) displays,
the rendering resolution of games and other graphical apps has
been proportionally increased. Some game vendors have distributed
HD texture packs to upgrade the texture quality of their game
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apps. Recreating high-resolution textures requires designers’ efforts.
As an alternative, a deep-learning-based image super-resolution
technique can automate this task [Takemura 2018].

Although recent advances in single-image super-resolution (SISR)
have made impressive progress with deep neural networks [Liang
et al. 2021; Wang et al. 2021; Zhang et al. 2021], direct use of these
techniques may not be suitable for increasing the resolution of
textures. Because the SISR techniques train networks for restoring
low-quality noisy images, upscaled results from noise-free input
images like textures may be too clean. In other words, the filtered
output may either lose some details or look unrealistic.

High-resolution textures also bring out storage and memory
overheads. If we upscale a texture by a factor of two (e.g., from
1Kx1K to 2Kx2K), the size of the texture is quadrupled. As a result,
the size of an HD texture pack ranges from tens to hundreds of gi-
gabytes. Thus, it is necessary to reduce the size of upscaled textures
if possible.

2 PROPOSED METHOD
To tackle the problems about the image quality and size, we present
a texture super-resolution (TexSR) technique (Figure 1). Note that
we aim at 2x texture upscaling for practical use.

The first stage of our technique is to perform an upscaling using
a SISR method. We investigated three state-of-the-art SISR meth-
ods: Real-ESRGAN [Wang et al. 2021], SwinIR [Liang et al. 2021]
and BSRGAN [Zhang et al. 2021], and we chose Real-ESRGAN
as the base algorithm among them because it showed better SR
results in our texture set than the others. We then retrained Real-
ESRGAN_x2plus with the modified parameters. First, we have re-
moved the additive Gaussian and Poisson noise because textures
usually do not include noise. Second, we have not considered the
perceptual loss for training the network. We found that this loss
was not highly effective for reconstructing details if the scaling
factor was two, and it also often generated color distortion.
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The second stage is a post-color correction to improve image
quality further. The output images from the first stage may tend
to either be over-smooth or show different color tones from the
original images due to inaccurate estimations of the neural network.
To recover the details and color tones, we compare four pixels in
the upscaled SR image and a pixel in its original image on the HSV
space. If the highest difference among hue, saturation, and values
between them is higher than 22%, we maintain the reconstructed
pixels to represent clean edges. If not, we blend the two images by
adding the difference to the pixels in the SR image and clipping
the values to the HSV range. Note that we set the threshold value
according to our internal experiments.

The last stage is texture compression. Among the standard tex-
ture compression formats, ASTC [Nystad et al. 2012] is the only
codec providing a fine-grained trade-off between quality and size.
Thus, ASTC is suitable for TexSR if the target platform supports
ASTC. Instead of applying the same block size to all textures, we
adopt a PSNR-based approach suggested by Nah [2022] to apply the
appropriate size to each texture with different characteristics. This
approach can minimize quality scarification caused by increased
block sizes because compressed textures result in similar or higher
PSNR values than the predefined target PSNR value.

3 EXPERIMENTAL RESULTS
To measure the image quality of our approach, we used the tex-
ture set used in Nah [2020] (excluding seven 8K textures) in our
experiments. We scaled the textures in the set by half, upscaled the
textures with super-resolution, and calculated the PSNR and FLIP
[Andersson et al. 2020] values of the results by comparing with the
original textures. As described in Table 1, our training parameter
adjustments showed 0.14 dB higher PSNR and 14% less FLIP mean
values on average, compared to the unmodified Real-ESRGAN. Af-
ter we applied the post-color correction, the PSNR value increased
by 1.24 dB on average, and the FLIP mean values decreased by 28%
on average. The zoomed-in images in Figure 2 support the results
in Table 1; TexSR successfully enhanced texture details, such as
holes, feathers, cloth, and tiles in the first to fourth textures.

To measure the space efficiency of our approach, we compare the
total texture sizes of the Crytek Sponza textures in Vulkan Sponza
[Willems 2018]. The size of all the DXT3 textures included in Vulkan
Sponza is 82 MB, and that of our 2x-upscaled, ASTC-compressed
textures is 164 MB (at 37.3 dB of the target PSNR [Nah 2022]).
Our approach reduced the storage and memory requirements of 2x
upscaling by half.

Table 1: Quantitative image quality comparison with the
entire texture set. Higher PSNR and lower FLIP values are
better, respectively.

Avg. PSNR (dB) Avg. FLIP (mean)
Real-ESRGAN (base) 26.79 0.125
+ modified parameters 26.93 0.108
+ post-color correction 28.17 0.078

4 FUTUREWORK
It is possible to find a more optimal threshold in the post-color
correction algorithm with further statistical analysis. We are also

Half-Resolution Real-ESRGAN TexSR (ours) Ground Truth

Kodim05 24.40 / 0.134 25.81 / 0.075

Lorikeet 28.97 / 0.107 30.70 / 0.056

Sponza_curtain_diff 21.21 / 0.223 23.27 / 0.139

Vokselia_spawn 21.88 / 0.159 22.52 / 0.119

Figure 2: Quality comparison of the four textures. The two
numbers below each magnified image represent PSNR and
FLIP values of the upscaled texture, respectively. ©Kodak,

Simon Fenney, Crytek and Vokselia

interested in real-time texture upscaling at the driver level because
this implementation can affect all graphical apps as with real-time
texture resizing [Nah et al. 2018].
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