

A Practical Encoding Approach for Texture Compression: Combining Multi-Processing and Multi-Threading

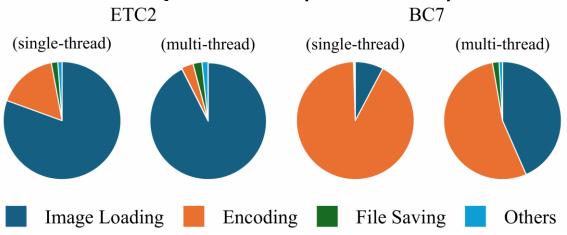
Hyeon-ki Lee¹, Jae-Ho Nah¹

¹Sangmyung University, Seoul, South Korea

Problem

Typical Texture Compression Stages

- (1) Image Loading
- (2) Encoding
- (3) File Saving


Prior Research Focus

- Encoding acceleration through multithreading [1-4]

Remaining Bottlenecks

- Image loading and decoding (e.g., PNG) limit parallel performance

Time Ratio per Codec (ETC2, BC7)

Motivation

Modern CPUs have multiple cores

- Modern CPUs have multiple cores, enabling flexible parallel execution
- Multi-processing and threading improve encoding performance

Multi-processing performance can depend on file access strategy

- Ordering files by size can optimize processing sequence
- Helps balance workload and reduce CPU idle time

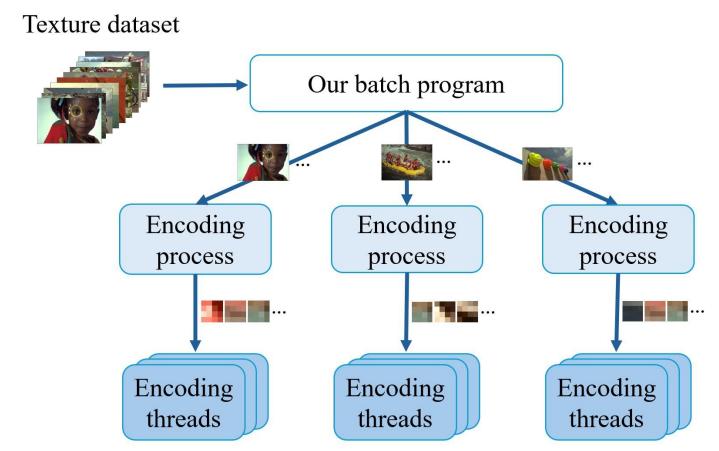
References

[1] Taudul, B. 2024. etcpak 2.0: The fastest ETC compressor on the planet.

https://github.com/wolfpld/etcpak

[2] Lee, H. and Nah, J.H. 2023. **H-ETC2: Design of a CPU-GPU Hybrid ETC2 Encoder**. *Computer Graphics Forum (Pacific Graphics)*.

[3] Nah, J.H. 2020. QuickETC2: Fast ETC2 texture compression using Luma differences. ACM TOG (SIGGRAPH Asia).


[4] Nah, J.H. 2023. QuickETC2-HQ: Improved ETC2 encoding techniques for real-time, high-quality texture compression. Computers & Graphics.

Contact email: 202533021@sangmyung.kr

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2025-00521436).

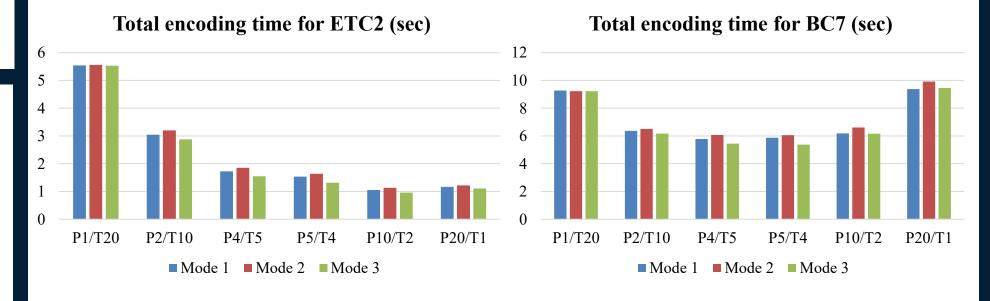
Our Approach

System Overview

1. Sorting Files by Descending Size

- Input files are sorted in descending order before encoding
- Smaller files are processed later to balance the workload

2. Combining Multi-processing and Multi-threading


- Multiple processes load and encode textures in parallel
- Each process uses multi-threading at the block level
- Reduces I/O overhead while maintaining fast encoding speed

Results

We measured encoding time (in sec) using our batch program (based on *etcpak 2.0* [1]) on 64 textures [3] (.png) with an Intel Core i7-12700 CPU (14C/20T).

Tested Configurations:

- 6 Process/Thread (Px/Tx) setting,
- 3 file access modes: Random (1), Ascending (2), Descending by size (3)

Key Findings:

- Up to 5.76x speedup for ETC2 (P10/T2)

Image loading dominates total encoding time
Parallel loading significantly improves performance

- Up to 1.7x speedup for BC7 (P4/T5 or P5/T4)

Balanced parallelization of loading and encoding is essential Especially important for high-complexity codecs like BC7