
AXAA: Adaptive approXimate Anti-Aliasing

Jae-Ho Nah, Sunho Ki, Yeongkyu Lim, Jinhong Park, and Chulho Shin ∗

LG Electronics

Figure 1: Anti-aliased images of the game Tera and the text SIGGRAPH. Compared to FXAA, AXAA improves text visibility, texture highlights,
and geometry details. Additionally, AXAA smooths long edges as well as FXAA. In terms of performance, AXAA is up to 2.3× and 2.8×
faster than CMAA and SMAA 1x, respectively. Image courtesy of Bluehole Studio.

Abstract

Post-processing anti-aliasing algorithms are widely used now for
real-time rendering because of their simplicity, performance, and
suitability for deferred shading. Fast approximate anti-aliasing
(FXAA) [Lottes 2009] is the fastest method among them, so many
games support FXAA to get anti-aliased images. However, FXAA
can easily lose texture details and text sharpness due to its excessive
blurring.

To alleviate those problems of FXAA, we present adaptive approxi-
mate anti-aliasing (AXAA). Our approach adds three contributions
to FXAA in order to avoid unnecessary filtering. First, we stop fur-
ther anti-aliasing processes if the current pixel or its neighbors are
judged as pixels on already filtered textures or fonts. Second, we
try to maintain thin lines as much as possible in order to avoid blur-
ring fonts and lines. Third, for higher performance, we adaptively
set the search range of each pixel according to luma contrast. Our
experiments show that AXAA provides significantly better image
quality than FXAA, in terms of texture, text, and geometry details.
Nevertheless, processing overhead of AXAA is still similar to that
of FXAA.

Keywords: anti-aliasing

Concepts: •Computing methodologies → Antialiasing; Image
manipulation; Computational photography;

∗e-mail:jaeho.nah, sunho.ki, yk.lim, jinhong1.park,
chulho.shin@lge.com
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). c© 2016 Copyright held by the owner/author(s).
SIGGRAPH 2016 Posters, July 24-28, 2016, Anaheim, CA
ISBN: 978-1-4503-4371-8/16/07
DOI: http://dx.doi.org/10.1145/2945078.2945129

1 Post-Processing Anti-Aliasing and FXAA

Multi-sample anti-aliasing (MSAA) has been considered as a stan-
dard anti-aliasing technique. However, its high bandwidth require-
ments (especially in deferred shading) and performance penalty
for multi-sampled frame buffers have resulted in an increased de-
mand for alternative approaches. As a result, post-processing anti-
aliasing (PPAA) is taking center stage as an attractive approach of
MSAA. Because PPAA is an image-based solution that is indepen-
dent of rendering pipelines, it is suitable for both forward and de-
ferred rendering and is quite fast.

Morphological anti-aliasing (MLAA) introduced by Reshetov
[2009] is one of the representative PPAA algorithms. MLAA de-
tects discontinuities, classifies discontinued edges into Z, U, and
L-shapes, and blends the edges with their neighborhood pixels.
Enhanced subpixel morphological anti-aliasing (SMAA) [Jimenez
et al. 2012] improves MLAA in various ways: accurate distance
searches, local contrast adaption, extended patterns and geometric
features detection, and combinations with temporal super-sampling
and MSAA. Conservative morphological anti-aliasing (CMAA)
[Davies 2014] takes a different approach; by separating locally
dominant edges and long edge shapes, CMAA achieves both mini-
mized shape distortion and smoothly anti-aliased edges.

In contrast to those multi-pass MLAA variations, fast approximate
anti-aliasing (FXAA) [Lottes 2009] requires a single shader kernel
(except for a simple luma calculation). Among various FXAA pre-
sets, the procedure of the FXAA 3.11 Quality preset is summarized
as follows. First, the luma range of the current pixel and its neigh-
bors is checked to extract a discontinued edge. Second, the domi-
nant edge direction and the high contrast edge are determined using
the neighborhood pixels. Third, both ends of the edge are searched.
Finally, a sub-pixel offset is calculated and the texture coordinate
is shifted by the offset for final blending. FXAA is usually faster
than CMAA/SMAA, but its imperfect luma-based edge detection
sometimes excessively blurs pixels and results in more blurry texts
and textures than CMAA/SMAA.

http://dx.doi.org/10.1145/2945078.2945129

2 Adaptive Approximate Anti-Aliasing

N
W M E

S

N
W M E

S

rangeMax

rangeMid±α

rangeMin

N
W M E

S

N

W M E

S Edge (O) Edge (X)

(a) (b)

(c)

W M
N

S
E W M

N

S
E

Figure 2: Three main ideas of AXAA: (a) avoiding further process-
ing of already filtered pixels, (b) maintaining contrast of thin lines,
and (c) adaptive search ranges according to luma contrast.

To increase image quality and performance of FXAA, we enhance
FXAA in three ways. The core idea of our approach is to avoid
unnecessary filtering of FXAA adaptively, so we call this approach
adaptive approximate anti-aliasing (AXAA).

The detailed approach is described as follows. First, we establish
an additional early-exit criterion to avoid duplicated anti-aliasing of
already filtered pixels (Figure 2-(a)). This is possible by calculating
additional median luma values (rangeMid); because image filtering
blends neighbor pixels, the color (and luma) value of some pixel in
an already filtered region is averaged over its neighbors. Thus, if we
check whether the luma values of the current pixel or its neighbors
are within the range of rangeMid ±α or not, we can easily avoid
blurring non-edge regions and increase visibility of textures and
true-type fonts. Our setting of the alpha value is 10%.

Second, we conserve contrast of thin one-pixel-width lines because
blurring thin lines dramatically decreases their visibility (Figure 2-
(b)). Our approach is simple; if both differences between the cur-
rent pixel and its two neighbor pixels in the dominant edge direction
(gradientN and gradientS in the FXAA code) are higher than a spe-
cific value (currently 0.3), we set the sub-pixel offset to 0 in order
to avoid bilinear filtering. This approach is especially effective for
increasing visibility of small fonts and thin geometry.

Third, we adaptively set the search range of the current pixel ac-
cording to its luma contrast (Figure 2-(c)). The wider the range
(=more iterations) in FXAA, the higher the quality. However,
search ranges in FXAA heavily affects performance because end-
to-edge searches in FXAA are performed on all pixels that passed
the early exit. We observe that if discontinued edges exist on low
contrast regions, it is hard to distinguish the results between narrow
and wide search ranges. Thus, we limit the search iteration accord-
ing to luma contrast in order to increase performance. We limit the
iteration count as follows:

max(dmin, dmax) ≤ 0.1 : only 1 iteration
min (dmin, dmax) > 0.1 : 2+ iterations are available
min (dmin, dmax) > 0.3 : 3+ iterations are available,

where dmin and dmax are the differences between the current
pixel’s luma value and the minimum and maximum luma values
in the region, respectively. The use of these adaptive search ranges
compensates for overheads of the first and second approaches de-
scribed above.

3 Experimental Results

Table 1: Experimental results on laptop/mobile GPUs (unit: ms).

Platform Intel HD nVIDIA AMD nVIDIA
Graphics GeForce Radeon Tegra K1

4600 840M 7650M
Scene Tera GameWorks FXAA
(API) (DirectX) (OpenGL)
SMAA 1x 10.6 4.2 9.6 5.9
CMAA 6.1 2.8 9.6 N/A
FXAA 3.11 5.3 2.5 4.2 2.0
AXAA 5.3 2.5 4.2 2.1

For our experiments, we used two scenes in Table 1: A scene in
the game Tera (Figure 1) and the FXAA demo in nVIDIA Game-
Works. We chose four different laptop/mobile platforms because
PPAA costs are more important on low-end GPUs than on high-end
GPUs. The fragment discard option for the FXAA/AXAA DirectX
version was enabled, and the resolution was full HD. According to
the results, AXAA achieves similar performance to FXAA, and it
is 1.1×-2.3× and 1.7×-2.8× faster than CMAA and SMAA 1x,
respectively. In terms of image quality, AXAA shows comparable
results to CMAA and SMAA 1x, as illustrated in Figure 1. Thus,
we believe that AXAA can be very attractive for laptop and mobile
platforms.

4 Limitations and Future Work

The current parameters are optimal for our experimental scenes,
so the current AXAA version may either miss jagged edges or blur
non-edges. We would like to continuously investigate these difficult
cases and improve image quality in the cases. Moreover, as other
single-sample PPAA approaches, our approach does not properly
handle sub-pixel problems and temporal aliasing. We think a com-
bination with spatial multi-sampling and temporal super-sampling
can be a solution, as with SMAA 4x.

Acknowledgments

We thank Leigh Davies, Timothy Lottes, and Jorge Jimenez for re-
leasing their source codes. Additional images of Davies’s synthetic
tests [2014], Kishonti GFXBench Egypt, and Tera are included in
the supplemental material for quality comparisons. We would like
to thank Jin-Woo Kim and Byeongjun Choi for their advice to im-
prove the quality of the poster.

References

DAVIES, L., 2014. Conservative morphological anti-
aliasing (CMAA) - March 2014 update. Intel Techi-
cal Report, https://software.intel.com/en-us/articles/
conservative-morphological-anti-aliasing-cmaa-update.

JIMENEZ, J., ECHEVARRIA, J. I., SOUSA, T., AND GUTIERREZ,
D. 2012. SMAA: enhanced subpixel morphological antialiasing.
Computer Graphics Forum (EUROGRAPHICS 2012) 31, 2pt1,
355–364.

LOTTES, T., 2009. FXAA. NVIDIA White Paper,
http://developer.download.nvidia.com/assets/gamedev/files/
sdk/11/FXAA WhitePaper.pdf.

RESHETOV, A. 2009. Morphological antialiasing. In Proceedings
of the Conference on High Performance Graphics 2009, ACM,
109–116.

https://software.intel.com/en-us/articles/conservative-morphological-anti-aliasing-cmaa-update
https://software.intel.com/en-us/articles/conservative-morphological-anti-aliasing-cmaa-update
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf

