
Classified Texture Resizing for Mobile Devices
Jae-Ho Nah
LG Electronics

nahjaeho@gmail.com

Byeongjun Choi
LG Electronics

byeongjun.choi@lge.com

Yeongkyu Lim
LG Electronics

limyeongkyu@gmail.com
LGE Internal Use Only

37/35

Uncompressed 
Icon/Menu 
Textures

Uncompressed 

General

Textures

Compressed 

General

Textures

Original
Game

Tuner

CTR
(ours)

Original 
Texture

Resized 
Texture

Figure 1: Comparison of Samsung Game Tuner with our classified texture resizing (CTR) method. In contrast to Samsung
Game Tuner, our approach can distinguish 2D icon/menu textures and general textures and, as a result, can preserve visibility.
Additionally, our approach can resize compressed textures which cannot be handled by Samsung Game Tuner. The screenshot
was captured in the game Beach Buggy Racing (courtesy of Vector Unit).

ABSTRACT
Power consumption is one of the most important factors in mobile
computing. Especially for high-quality games, it takes a lot of com-
puting power to render visual effects. In order to reduce this, some
rendering techniques (e.g., SamsungGame Tuner) adjust rendering
parameters (screen resolution, frame rates, and texture sizes) to im-
prove power efficiency or performance. Among them, the texture
resizing reduces power consumption in some cases, but it some-
times results in poor rendering quality or no energy saving.

To improve the texture resizing, we present the classified tex-
ture resizing technique. Our main idea is to classify textures into
certain types and to apply a different approach to each type. As
a result, our approach minimizes degradation of rendering quality
and can be applied to wider applications. Our experimental results
show up to 16% power reduction of a GPU and DRAM.

CCS CONCEPTS
• Human-centered computing → Mobile devices; • Comput-
ing methodologies → Texturing; Graphics processors;

KEYWORDS
texture mapping, mobile GPUs, power reduction techniques

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’18 Talks, August 12-16, 2018, Vancouver, BC, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5820-0/18/08.
https://doi.org/10.1145/3214745.3214763

ACM Reference Format:
Jae-Ho Nah, Byeongjun Choi, and Yeongkyu Lim. 2018. Classified Texture
Resizing for Mobile Devices. In Proceedings of SIGGRAPH ’18 Talks. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3214745.3214763

1 INTRODUCTION
Advanced graphics techniques are becoming increasingly common
in high-quality mobile games. However, the use of these graphics
techniques sometimes brings out performance, battery, or thermal
issues. To relieve these issues, there are various techniques for im-
proving GPU energy efficiency [Mittal and Vetter 2015].

A few smartphonemanufacturers have tried to trade high graph-
ics quality off against higher frame rates or less power consump-
tion by providing software tools. LG Game Optimizer introduced
in LG G4 decreases screen resolution of game apps at the Android
framework level. This method only provides an on/off switch for
predefined apps in the whitelist, so its flexibility is limited. As its
enhanced version, LG Game Battery Saver in LG G6 offers the abil-
ity to control screen resolution and a frame rate of each app to
users.

Samsung Game Tuner has similar functions to LGGame Battery
Saver but includes one more feature: texture quality control (since
v2.1 [2016]). By using this feature, a user can control the size of
uncompressed static textures. Its process consists of four stages.
First, an uncompressed texture is rendered into an off-screen frame
buffer. Second, the result is uploaded into the CPUmemory via the
glReadPixels() function. Third, the texture is resized on the CPU.
Finally, the resized texture is downloaded to the GPU again.

Texture quality control in Game Tuner can be useful when tex-
turing is a performance bottleneck or requires a lot of memory

https://doi.org/10.1145/3214745.3214763
https://doi.org/10.1145/3214745.3214763


SIGGRAPH ’18 Talks, August 12-16, 2018, Vancouver, BC, Canada Nah, Choi, and Lim

traffic. However, this approach has several limitations. First, qual-
ity degradation can occur because game graphics designers usually
separate compressed and uncompressed textures to prevent arti-
facts from compression. Second, the approach has no effect on tex-
tures either dynamically created by render-to-texture techniques
or stored in a compressed format. Finally, the use of glReadPixels()
increases app loading time.

2 CLASSIFIED TEXTURE RESIZING
To resolve the above limitations of Game Tuner, we present a differ-
ent approach called classified texture resizing (CTR). As its name
implies, our solution is based on texture classification. The classi-
fication criteria are generation time (static or dynamic), compres-
sion, mipmapping, and aspect ratios as depicted in Figure 2. Note
that CTR is executed at the OpenGL ES driver level, so the classifi-
cation is possible by analyzing OpenGL ES commands.

According to the classification, different approaches are applied
to textures as follows. We first classify textures as static and dy-
namic textures. Static textures, which are already stored in an app,
are classified into three categories again. First, non-mipmapped,
compressed textures, which are usually background images (e.g.,
sky), are decompressed, resized, and re-compressed. For compres-
sion and decompression, we have ported the code of etcpak 0.5
[Taudul 2016], which is the fastest ETC compression library, into
the driver. Our current implementation is less optimized than the
original etcpak for x86 desktop platforms; only a single thread and
no SIMD intrinsics are used. Also, only the ETC1/ETC2 RGB for-
mat is currently supported.

Second, mipmapped textures are resized with a simpler method.
By decreasing the mipmap level of each texture by one in the com-
mand dispatcher, the maximum size of each texture can be de-
creased to one fourth. It is hard to distinguishmipmapped and non-
mipmapped textures before a level-1 texture is loaded. Thus, our
current implementation first performs ETC1 re-encoding when aLGE Internal Use Only

41/35

ETC1
Re-encoding

No Resizing

Non-
mipmapped

Compressed

Mipmap
Level 
Control

Mipmapped

Uncompressed

Static 
Textures

LGE Internal Use Only

42/35

No Resizing Dynamic 
Textures

Resizing 

Aspect ratio ≠ 1:1 Aspect ratio= 1:1 

Figure 2: Our texture classification. A different approach is
applied to textures in each category. The example textures
are included in Beach Buggy Racing.

compressed level-0 texture is loaded. After that, the mipmap level
control is performed from level 1 to the maximum level. In the case
of uncompressed textures, CTR is much simpler than Game Tuner,
so the resizing overhead is minimized.

Third, non-mipmapped, uncompressed textures are not handled
because they are usually one-to-onemapped to a screen (e.g., icons,
menus, screen-sized images, etc.). Because these textures are not
compressed on purpose by graphics designers, CTR preserves im-
age quality in contrast to Game Tuner.

In the case of dynamic textures which are generated on-the-fly
with render-to-texture techniques, we use aspect ratios for our clas-
sification to resize only shadow maps. The reason for this is that
resizing the main frame buffer or G-buffers has a side effect, redun-
dant screen resolution resizing, when the screen resolution control
is used together. To avoid that, we only resize textures with a 1:1
aspect ratio; shadow maps are usually classified as this type.

In summary, CTR provides the following advantages compared
toGameTuner: additional resizing compressed textures and shadow
maps; efficient resizing mipmapped textures; and quality preserva-
tion of non-mipmapped, uncompressed textures.

3 EXPERIMENTAL RESULTS
For experiments, we executed three mobile games (Beach Buggy
Racing, Implosion, and Xenowerk) on aMADK development board
with an ARM 64-bit Cortex CPU, ARM Mali GPU, and LPDDR3
RAM.When executing the games, we used a National Instruments
USB-6363 device to measure exactly the power consumption of the
GPU and DRAM.

Compared to no texture resizing, the saving rates for power con-
sumption of each game are 10.3% (Beach Buggy Racing), 4.2% (Im-
plosion), and 16.3% (Xenowerk), respectively. As illustrated in Fig-
ure 1, in contrast to Game Tuner, we can preserve the visibility
of icon and menu textures. Note that the resizing factors of both
methods in the figure are commonly 25% and a Galaxy S7 was used
for the comparison.

The loading time of each app is increased by 2.2 s (Beach Buggy
Racing), 0.3 s (Implosion), and 2.8 s (Xenowerk), respectively. In
Beach Buggy Racing andXenowerk, ETC1RGB texture re-encoding
increases loading time, and these are comparable results to Game
Tuner (∼2 s). Implosion has only ETC2RGBA textures, so this game
does not lead to texture re-encoding and does show only a negligi-
ble loading time increase within the margin of error.

4 LIMITATIONS AND FUTUREWORK
Wewould like to decrease app loading time through cleverermipmap
detection andmulti-threaded texture compressionwithARMNeon
intrinsics. Additionally, the current version only supports re-encoding
ETC1/2 RGB textures. We would like to support various data types
(e.g., RGBA, 3D, HDR, etc.) and texture compression formats (e.g.,
ASTC) as future work.

REFERENCES
Sparsh Mittal and Jeffrey S Vetter. 2015. A survey of methods for analyzing and im-

proving GPU energy efficiency. ACM Computing Surveys (CSUR) 47, 2 (2015), 19.
Samsung Electronics. 2016. Game Tuner. https://play.google.com/store/apps/details?

id=com.samsung.android.gametuner.thin. (2016).
Bartosz Taudul. 2016. etcpak 0.5. https://bitbucket.org/wolfpld/etcpak. (2016).

https://play.google.com/store/apps/details?id=com.samsung.android.gametuner.thin
https://play.google.com/store/apps/details?id=com.samsung.android.gametuner.thin
https://bitbucket.org/wolfpld/etcpak

	Abstract
	1 introduction
	2 Classified texture resizing
	3 experimental results
	4 limitations and future work
	References

