
Jae-Ho Nah1,3,4,5, Hyuck-Joo Kwon1, Dong-Seok Kim1,
Cheol-Ho Jeong2, Jinhong Park3,

Tack-Don Han4, Dinesh Manocha5, and Woo-Chan Park1

1Sejong University, 2Siliconarts, 3LG Electronics,
4Yonsei University, 5University of North Carolina at Chapel Hill

1

• Ray tracing (RT) [Whitted 1980]
◦ Classic rendering algorithm for photo-realistic rendering

 Our goal
◦ “Real-time” ray tracing dynamic scenes on

“mobile devices” for triangulated models

 Why mobile ray tracing?
◦ High interest in generating photo-realistic images at low power cost

◦ Ray tracing H/W can be a solution for mobile graphics

2

3

 RPU/D-RPU

[Woop et al. 2005/2006]

 Mainly focus on high-quality rendering on desktop PCs
◦ A large chip area & high power consumption for high performance

4

 TRaX

[Spjut et al. 2009]

 T&I Engine

[Nah et al. 2011]

 Mobile environment
◦ Very limited area and power budget (~20 mm2, ~2 W for a GPU)

 S/W approach
◦ MobiRT

[Nah et al. 2010]

 Either no real-time performance or

results based on S/W simulations

 H/W approaches
◦ MRTP

[Kim et al. 2012, 2013]

◦ SGRT

[Lee et al. 2012, 2013]

6

H/W
Kd-tree
Builder

Unified
MIMD
Traversal &
Intersection
Architecture

Efficient
Memory
System

Other
Optimization
Techniques

Inverse
Displacement
Mapping Unit

Area:
20mm2

@28nm HPL

Performance:
~239M rays/s &
~6M triangles/s

Power
consumption:
1W@28nm HPL

~60X faster than

previous mobile RT H/W
Similar to current mobile GPUs

7

8

Main components

 Fixed-function units vs programmable units

◦ High area and power efficiency

9

Fixed-
function

Units

Execute

parameter

Programmable Units

code

ExecuteDecodeFetch

√ Our choice

 MIMD vs SIMD

◦ High H/W utilization regardless of ray coherence

10

√ Our choice

 Unified traversal & intersection (T&I) units vs

separate T&I units

◦ No load imbalance problem in prior separate T&I units

11

√ Our choice

Unified
T&I
unit

Unified
T&I
unit

Unified
T&I
unit

Unified
T&I
unit

Traversal unit

Traversal unit

Traversal unit

Traversal unit

Intersection
unit

 Multi-threading method

◦ Reuse existing buffers/registers to minimize additional register files

12

√ Our choice

Processing
Unit

Pipeline
registers

Looping for
the next chance

Processing units

Large
register files

GPU-style
H/W multi-threading

 Acceleration structure (AS)

◦ Fast traversal with early termination

◦ Good cache efficiency with a small node size (8 bytes)

◦ Our H/W tree builder solves the tree-build time problem

13

√ Our choice

GridKd-tree BVH

 Full Whitted ray-tracing effects

Specular reflection Refraction Shadows

14

 Distribution ray-tracing effects

Ambient occlusion (AO) Diffuse inter-reflection

15

 Inverse displacement mapping

16

17

 Setup-processing unit

 Ray-generation unit

 Multiple traversal & intersection

(T&I) units

 Hit-point calculation unit

 Shading unit

18

 Initialize primary-ray information

(ray type+ray index)

 Pass secondary-ray information

defined by the shading unit

19

Setup processing

MUX

Shading

Ray generation

Primary
Ray Info.

Secondary
Ray Info.

 Generate primary/

secondary/shadow rays

 A single pipeline with three modes

 No load imbalance problem

 Greatly simplified control logic and

interfaces between units

20

raymiss

ray

 Simple multi-threading technique

 Operation
◦ Cache miss idle

◦ Next loop reactive

◦ A cache miss acts as prefetching data

 Pros
◦ Ease of H/W implementation

◦ Use of existing internal memory

(input/output buffers & pipeline registers)

21

ray

hit

 Two-levels of caches (L1/L2)
◦ L1/L2 Address FIFO for handling memory requests

◦ L1/L2 Address/Data FIFO for delivering address & data to

the upper-level cache

22

 Hit-point calculation
◦ Calculate the final (x,y,z) position

p(t) = o+t·d

 Shading
◦ Phong illumination

◦ Texture mapping with bilinear filtering & mip-mapping

◦ Inverse displacement mapping

23

 Two pipeline types
◦ Binning for upper-level nodes + sorting for lower-level nodes

◦ Fast kd-tree construction without significant tree-quality degradation

 Memory traffic reduction techniques
◦ Internal working memory for local tree-building procedure

◦ Node scheduling for burst memory accesses

24

 OpenGL ES 1.1-like API
◦ Provides similar interfaces to OpenGL ES programming

◦ Static objects/tree are retained for subsequent frames

◦ Dynamic objects/subtrees are updated during each frame

 Complete specification and its programming guide are

provided on the Siliconarts homepage (www.siliconarts.com)

25

26

 iNEXT-V6 board
◦ 2 Xilinx Virtex-6 LX550 FPGA chips

◦ 2 GB of DDR3 RAM & 8 MB of SRAM

◦ A TFT LCD board with 800x480 resolution

◦ PCI Express interface

 Our implementation
◦ 4 FPGA chips for 4 RTUs (with 2 iNEXT-V6 boards)

◦ 1 FPGA chip for 1 TBU

◦ 84 MHz core and memory clock

◦ Total required SRAM: 507KB for an RTU and 218KB for a TBU

27

 TSMC’s 28 nm HPL process and Synopsys design compiler

 Clock frequency: 500MHz@0.9V

 Area: 3mm2 per RTU (18mm2 for 6 RTUs) + 1.6mm2 per TBU

 Internal power consumption : 1W for 6 RTUs and 1 TBU

 Particularly suitable for mobile devices

28

 Whitted ray tracing

◦ 4 RTUs @ 84MHz

◦ 3-5 rays per pixel

◦ Performance: 23-26 Mrays/s

◦ Memory traffic: 46-122 MB/s

◦ FPS: 13-21 @ 840Ⅹ480 resolution

◦ Interactive frame rates

Kitchen Moving light Living room

31

 Distribution ray tracing

◦ 4 RTUs @ 84MHz

◦ 2 (primary), 16 (AO), 32 (diffuse) rays per pixel

◦ Performance: 21 (primary), 23 (AO), 18–20 (diffuse) Mrays/s

◦ Memory traffic: 8-62 (primary / AO), 420-605 (diffuse) MB/s

◦ Low performance degradation when tracing incoherent rays

Conference Sibenik

32

 Inverse displacement mapping (IDM)

◦ 4 RTUs @ 84MHz

◦ Performance: 18-20 Mrays/s

◦ 30% increase of memory traffic to access the height map

◦ Detailed results are included in

Kwon et al., Effective traversal algorithms and hardware architecture for

pyramidal inverse displacement mapping, Computers & Graphics, 2014

31

BART Kitchen

(IDM off) (IDM on)

 Performance (1 TBU)
◦ 1.6~117.9 ms/frame @ 84MHz for 0.6~64K triangles

◦ 0.4~1M triangles/s

 Memory traffic
◦ 0.1~36.1 MB/frame

32

 RTU performance
◦ 9X faster than the FPGA ver. (84500MHz & 46 RTUs)

◦ ~239M rays/s & 56 FPS@720p

 TBU performance
◦ 6X faster than the FPGA ver. (84500MHz & 1 TBU)

◦ 2~6M triangles/s

 Required memory bandwidth
◦ 1.1GB/s on 6 RTUs for Whitted ray tracing

◦ 1.1GB/s on 1 TBU for 30FPS kd-tree construction

◦ Much less than the bandwidth of dual LPDDR3 1333MHz (12.8GB/s)

33

 Ray-tracing performance in the Conference scene

◦ Desktop-level performance

◦ Mobile-level area and power consumption

34

GPU
[Gribble and

Naveros 2013]

MIC
[Benthin et
al. 2012]

Mobile
RT H/W

[Kim et al.
2013]

RayCore
ASIC
(ours)

Mrays/s 500 210 4 239

Platform NVIDIA GTX690 Intel MIC Reconf.
SIMT

RTU

Process(nm) 28 45 90 28

Clock (MHz) 915 1200 50-400 500

Area (mm2) 294Ⅹ2 - 16 18 (6 RTUs)

Power
consumption(W)

300 (TDP) - 0.2
@100MHz

1
(RTU+TBU)

 KD-tree construction performance

◦ Comparable performance to CPU/GPU approaches

& much less H/W resources/power consumption

35

CPU
[Shevtsov et al. 2007]

GPU
[Hou et al. 2011]

RayCore ASIC
(ours)

Time to build
a kd-tree (ms)

27 38 20

Scene
(# of tris)

Bunny
(69K)

Robots
(71K)

Transparent
Shadows (64K)

Platform Intel Core2 DuoⅩ2 NVIDIA GTX280 TBU

Process 65 55 28

Clock (MHz) 3000 1476 500

Area (mm2) 143Ⅹ2 576 1.6 (1 TBU)

Power
consumption(W)

65Ⅹ2 (TDP) 236 (TDP) 1 (RTU+TBU)

36

Limitations Future work

Focus on Whitted ray tracing To accelerate bidirectional path
tracing

37

Limitations Future work

Focus on Whitted ray tracing To accelerate bidirectional path
tracing

Fixed pipelines To combine with programmable
shaders

38

RTU RTU GPU

Limitations Future work

Focus on Whitted ray tracing To accelerate bidirectional path
tracing

Fixed pipelines To combine with programmable
shaders

High memory traffic on
incoherent ray tracing

Additional ray-sorting logic

39

RTU DRAM RTU DRAM

Ray
sorting

Limitations Future work

Focus on Whitted ray tracing To accelerate bidirectional path
tracing

Fixed pipelines To combine with programmable
shaders

High memory traffic on
incoherent ray tracing

Additional ray-sorting logic

Only support kd-trees To support both kd-trees and
BVHs

40

BVHKd-treeKd-tree

 A new hardware ray tracer for mobile devices including
◦ Unified T&I pipelines

◦ H/W kd-tree builder

◦ Other various novel techniques

 RayCore can be used for various mobile applications
◦ Games, UX, AR, etc.

◦ High-quality images & simpler programming

41

42

