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• Ray tracing (RT) [Whitted 1980]
◦ Classic rendering algorithm for photo-realistic rendering

 Our goal
◦ “Real-time” ray tracing dynamic scenes on

“mobile devices” for triangulated models

 Why mobile ray tracing?
◦ High interest in generating photo-realistic images at low power cost

◦ Ray tracing H/W can be a solution for mobile graphics 
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 RPU/D-RPU

[Woop et al. 2005/2006]

 Mainly focus on high-quality rendering on desktop PCs
◦ A large chip area & high power consumption for high performance
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 TRaX

[Spjut et al. 2009]

 T&I Engine

[Nah et al. 2011]



 Mobile environment
◦ Very limited area and power budget (~20 mm2, ~2 W for a GPU)

 S/W approach
◦ MobiRT

[Nah et al. 2010]

 Either no real-time performance or 

results based on S/W simulations

 H/W approaches
◦ MRTP 

[Kim et al. 2012, 2013]

◦ SGRT 

[Lee et al. 2012, 2013]
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H/W 
Kd-tree 
Builder

Unified 
MIMD 
Traversal & 
Intersection 
Architecture

Efficient 
Memory 
System

Other 
Optimization 
Techniques

Inverse
Displacement 
Mapping Unit

Area:
20mm2

@28nm HPL

Performance:
~239M rays/s &
~6M triangles/s

Power 
consumption:
1W@28nm HPL

~60X faster than 

previous mobile RT H/W
Similar to current mobile GPUs 
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Main components



 Fixed-function units vs programmable units

◦ High area and power efficiency 

9

Fixed-
function

Units

Execute

parameter

Programmable Units

code

ExecuteDecodeFetch

√ Our choice



 MIMD vs SIMD

◦ High H/W utilization regardless of ray coherence
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√ Our choice



 Unified traversal & intersection (T&I) units vs

separate T&I units

◦ No load imbalance problem in prior separate T&I units
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√ Our choice

Unified
T&I 
unit

Unified
T&I 
unit

Unified
T&I 
unit

Unified
T&I 
unit

Traversal unit

Traversal unit

Traversal unit

Traversal unit

Intersection 
unit



 Multi-threading method

◦ Reuse existing buffers/registers to minimize additional register files
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√ Our choice

Processing
Unit

Pipeline
registers

Looping for 
the next chance

Processing units

Large
register files

GPU-style
H/W multi-threading



 Acceleration structure (AS)

◦ Fast traversal with early termination

◦ Good cache efficiency with a small node size (8 bytes)

◦ Our H/W tree builder solves the tree-build time problem
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√ Our choice

GridKd-tree BVH



 Full Whitted ray-tracing effects

Specular reflection         Refraction                  Shadows 
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 Distribution ray-tracing effects 

Ambient occlusion (AO)                Diffuse inter-reflection
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 Inverse displacement mapping
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 Setup-processing unit

 Ray-generation unit

 Multiple traversal & intersection  

(T&I) units

 Hit-point calculation unit

 Shading unit
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 Initialize primary-ray information 

(ray type+ray index)

 Pass secondary-ray information 

defined by the shading unit
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Setup processing

MUX

Shading

Ray generation

Primary
Ray Info.

Secondary
Ray Info.

 Generate primary/ 

secondary/shadow rays



 A single pipeline with three modes

 No load imbalance problem 

 Greatly simplified control logic and 

interfaces between units
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raymiss

ray

 Simple multi-threading technique

 Operation
◦ Cache miss  idle 

◦ Next loop  reactive

◦ A cache miss acts as prefetching data

 Pros
◦ Ease of H/W implementation 

◦ Use of existing internal memory 

(input/output buffers & pipeline registers)
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 Two-levels of caches (L1/L2)
◦ L1/L2 Address FIFO for handling memory requests

◦ L1/L2 Address/Data FIFO for delivering address & data to

the upper-level cache
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 Hit-point calculation
◦ Calculate the final (x,y,z) position 

p(t) = o+t·d

 Shading
◦ Phong illumination

◦ Texture mapping with bilinear filtering & mip-mapping

◦ Inverse displacement mapping
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 Two pipeline types
◦ Binning for upper-level nodes + sorting for lower-level nodes

◦ Fast kd-tree construction without significant tree-quality degradation

 Memory traffic reduction techniques
◦ Internal working memory for local tree-building procedure 

◦ Node scheduling for burst memory accesses 
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 OpenGL ES 1.1-like API
◦ Provides similar interfaces to OpenGL ES programming

◦ Static objects/tree are retained for subsequent frames

◦ Dynamic objects/subtrees are updated during each frame

 Complete specification and its programming guide are 

provided on the Siliconarts homepage (www.siliconarts.com)
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 iNEXT-V6 board
◦ 2 Xilinx Virtex-6 LX550 FPGA chips

◦ 2 GB of DDR3 RAM & 8 MB of SRAM

◦ A TFT LCD board with 800x480 resolution

◦ PCI Express interface

 Our implementation
◦ 4 FPGA chips for 4 RTUs (with 2 iNEXT-V6 boards)

◦ 1 FPGA chip for 1 TBU

◦ 84 MHz core and memory clock

◦ Total required SRAM: 507KB for an RTU and 218KB for a TBU
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 TSMC’s 28 nm HPL process and Synopsys design compiler

 Clock frequency: 500MHz@0.9V 

 Area: 3mm2 per RTU (18mm2 for 6 RTUs) + 1.6mm2 per TBU

 Internal power consumption : 1W for 6 RTUs and 1 TBU

 Particularly suitable for mobile devices
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 Whitted ray tracing

◦ 4 RTUs @ 84MHz

◦ 3-5 rays per pixel

◦ Performance: 23-26 Mrays/s 

◦ Memory traffic: 46-122 MB/s

◦ FPS: 13-21 @ 840Ⅹ480 resolution

◦ Interactive frame rates

Kitchen Moving light Living room
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 Distribution ray tracing

◦ 4 RTUs @ 84MHz

◦ 2 (primary), 16 (AO), 32 (diffuse) rays per pixel

◦ Performance: 21 (primary), 23 (AO), 18–20 (diffuse) Mrays/s

◦ Memory traffic: 8-62 (primary / AO), 420-605 (diffuse) MB/s

◦ Low performance degradation when tracing incoherent rays

Conference Sibenik
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 Inverse displacement mapping (IDM)

◦ 4 RTUs @ 84MHz

◦ Performance: 18-20 Mrays/s 

◦ 30% increase of memory traffic to access the height map

◦ Detailed results are included in 

Kwon et al., Effective traversal algorithms and hardware architecture for 

pyramidal inverse displacement mapping, Computers & Graphics, 2014
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BART Kitchen

(IDM off) (IDM on)



 Performance (1 TBU)
◦ 1.6~117.9 ms/frame @ 84MHz for 0.6~64K triangles

◦ 0.4~1M triangles/s 

 Memory traffic
◦ 0.1~36.1 MB/frame
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 RTU performance
◦ 9X faster than the FPGA ver. (84500MHz & 46 RTUs)

◦ ~239M rays/s & 56 FPS@720p

 TBU performance
◦ 6X faster than the FPGA ver. (84500MHz & 1 TBU)

◦ 2~6M triangles/s

 Required memory bandwidth
◦ 1.1GB/s on 6 RTUs for Whitted ray tracing 

◦ 1.1GB/s on 1 TBU for 30FPS kd-tree construction 

◦ Much less than the bandwidth of dual LPDDR3 1333MHz (12.8GB/s)
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 Ray-tracing performance in the Conference scene

◦ Desktop-level performance

◦ Mobile-level area and power consumption
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GPU
[Gribble and 

Naveros 2013]

MIC
[Benthin et 
al. 2012]

Mobile
RT H/W

[Kim et al. 
2013]

RayCore
ASIC
(ours)

Mrays/s 500 210 4 239

Platform NVIDIA GTX690 Intel MIC Reconf.
SIMT

RTU

Process(nm) 28 45 90 28

Clock (MHz) 915 1200 50-400 500

Area (mm2) 294Ⅹ2 - 16 18 (6 RTUs)

Power 
consumption(W)

300 (TDP) - 0.2
@100MHz

1 
(RTU+TBU)



 KD-tree construction performance

◦ Comparable performance to CPU/GPU approaches

& much less H/W resources/power consumption

35

CPU
[Shevtsov et al. 2007]

GPU
[Hou et al. 2011]

RayCore ASIC
(ours)

Time to build
a kd-tree (ms)

27 38 20

Scene
(# of tris)

Bunny 
(69K)

Robots
(71K)

Transparent
Shadows (64K)

Platform Intel Core2 DuoⅩ2 NVIDIA GTX280 TBU

Process 65 55 28

Clock (MHz) 3000 1476 500

Area (mm2) 143Ⅹ2 576 1.6 (1 TBU)

Power 
consumption(W)

65Ⅹ2 (TDP) 236 (TDP) 1 (RTU+TBU)
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Limitations Future work

Focus on Whitted ray tracing To accelerate bidirectional path 
tracing
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Limitations Future work

Focus on Whitted ray tracing To accelerate bidirectional path 
tracing

Fixed pipelines To combine with programmable 
shaders
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RTU RTU GPU



Limitations Future work

Focus on Whitted ray tracing To accelerate bidirectional path 
tracing

Fixed pipelines To combine with programmable 
shaders

High memory traffic on 
incoherent ray tracing

Additional ray-sorting logic
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RTU DRAM RTU DRAM

Ray 
sorting



Limitations Future work

Focus on Whitted ray tracing To accelerate bidirectional path 
tracing

Fixed pipelines To combine with programmable 
shaders

High memory traffic on 
incoherent ray tracing

Additional ray-sorting logic

Only support kd-trees To support both kd-trees and 
BVHs  
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BVHKd-treeKd-tree



 A new hardware ray tracer for mobile devices including
◦ Unified T&I pipelines

◦ H/W kd-tree builder

◦ Other various novel techniques

 RayCore can be used for various mobile applications
◦ Games, UX, AR, etc.

◦ High-quality images & simpler programming
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